首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Entamoeba histolytica is an intestinal parasite that causes dysentery and liver abscess. Parasite cell surface receptors, such as the Gal/GalNAc lectin, facilitate attachment to host cells and extracellular matrix. The Gal/GalNAc lectin binds to galactose or N-acetylgalactosamine residues on host components and is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Although Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), Hgl and Lgl transiently associate with this compartment in a cholesterol-dependent fashion. In this study, trophozoites were exposed to biologically relevant ligands to determine if ligand binding influences the submembrane distribution of the subunits. Exposure to human red blood cells (hRBCs) or collagen, which are bona fide Gal/GalNAc lectin ligands, was correlated with enrichment of Hgl and Lgl in rafts. This enrichment was abrogated in the presence of galactose, suggesting that direct lectin-ligand interactions are necessary to influence subunit location. Using a cell line that is able to attach to, but not phagocytose, hRBCs, it was shown that physical attachment to ligands was not sufficient to induce the enrichment of lectin subunits in rafts. Additionally, the mutant had lower levels of phosphatidylinositol (4,5)-bisphosphate (PIP(2)); PIP(2) loading restored the ability of this mutant to respond to ligands with enrichment of subunits in rafts. Finally, intracellular calcium levels increased upon attachment to collagen; this increase was essential for the enrichment of lectin subunits in rafts. Together, these data provide evidence that ligand-induced enrichment of lectin subunits in rafts may be the first step in a signaling pathway that involves both PIP(2) and calcium signaling.  相似文献   

2.
Entamoeba histolytica is the causative agent of dysentery and liver abscess and is prevalent in developing countries. Adhesion to the host is critical to infection and is mediated by amoebic surface receptors. One such receptor, the Gal/GalNAc lectin, binds to galactose or N-acetylgalactosamine residues on host components and consists of heavy (Hgl), light (Lgl) and intermediate (Igl) subunits. The mechanism by which the lectin assembles into a functional complex is not known. The parasite also relies on cholesterol-rich domains (lipid rafts) for adhesion. Therefore, it is conceivable that rafts regulate the assembly or function of the lectin. To test this, amoebae were loaded with cholesterol and lipid rafts were purified and characterised. Western blotting showed that cholesterol loading resulted in co-compartmentalisation of all three subunits in rafts. This co-compartmentalisation was accompanied by an increase in the ability of the amoebae to bind to host cells in a galactose-specific manner, suggesting that there is a correlation between location and function of the Gal/GalNAc lectin. Cholesterol loading did not increase the surface levels of the lectin subunits. Therefore, the cholesterol-induced increase in adhesion was not the result of externalisation of an internal pool of subunits. A mutant cell line that modestly responded to cholesterol with a slight increase in adhesion exhibited only a slight enrichment of Hgl and Lgl in rafts. This supports the connection between location and function of the Gal/GalNAc lectin. Actin can also influence the interaction of proteins with rafts. Therefore, the sub-membrane distribution of the lectin subunits was also assessed after treatment with an actin depolymerising agent, cytochalasin D. Cytochalasin D-treatment had no effect on the submembrane distribution of the subunits, suggesting that actin does not prevent the association of lectin subunits with rafts in this system. Together, these data provide insight into the molecular mechanisms regulating the location and function of this adhesin.  相似文献   

3.
One of the under-represented genes identified by cDNA representational difference analysis (RDA) between avirulent Entamoeba histolytica strain Rahman and virulent strain HM-1:IMSS was the amoebic light (35 kDa) subunit of the Gal/GalNac lectin complex. This lectin complex, which mediates the adhesion of the parasite to the target cell, also contains a heavy (170 kDa) subunit, which has the carbohydrate-binding domain. Stable transfectants of the virulent strain in which the expression of the 35 kDa subunit was inhibited by antisense RNA were not significantly affected in their adhesion activity to mammalian or bacterial cells but were strongly inhibited in their cytopathic activity, cytotoxic activity and in their ability to induce the formation of liver lesions in hamsters. These findings suggest that the 35 kDa subunit may have a specific function in the pathogenic pathway and provides a new insight into the role of this component of the Gal/GalNac lectin complex in amoebic virulence.  相似文献   

4.
The Gal/GalNAc lectin gene of Entamoeba histolytica is a major amebic virulence protein responsible for interaction with host tissues. We investigated sequence differences in the Gal/GalNAc lectin heavy subunit in three isolates from Bangladesh and one isolate from Georgia, each of which was determined to be genetically distinct by SREHP AluI digestion. Interestingly, we observed only slight genetic diversity in the lectin gene as compared with the HM1:IMSS laboratory strain, originally a clinical isolate from Mexico. Genetic conservation of the Gal/GalNAc lectin between isolates may reflect that the lectin is under strong functional selection or possibly, that E. histolytica is a clonal population. Sequence conservation of the lectin indicates that immune responses against it should be cross-protective.  相似文献   

5.
The human pathogenic protozoan Entamoeba histolytica is a motile cell polarized into a front pseudopod and a rear uroid. The amoebic Gal/GalNAc surface lectin is a major adhesion molecule composed of an immunodominant 170-kDa heavy subunit, mostly extracellular except for a short cytoplasmic tail, and of an extracellular light subunit. The binding of multivalent ligands triggers lectin capping and recruitment to the uroid. The properties of the Gal/GalNAc lectin and its role in amoeba adhesion and uroid polarization are reviewed in the context of the molecular mechanisms underlying cell polarization and locomotion.  相似文献   

6.
Amebiasis contributes to approximately 50 million cases of life-threatening dysentery worldwide. Comparison of the lectins from Entamoeba histolytica (pathogenic) and Entamoeba dispar (nonpathogenic) was undertaken to elucidate the differential roles of this molecule in invasion versus colonization. Surface lectin was less abundant on axenic E. dispar than on axenic E. histolytica, commensurate with differences in lectin (heavy and light subunits) RNA when assessed by semiquantitative RT-PCR. The 1G7 epitope, which falls within the immunodominant and immunoprotective cysteine-rich region (480-900), was absent on axenic E. dispar. Indirect immunofluorescence, transient transection of COS7, and immunoprecipitation demonstrated that the 1G7 epitope was conserved in the nonpathogenic lectin homologue but not exposed on live E. dispar trophozoites. Hgl2 (E. histolytica) and Dhgl2 (E. dispar) lectin homologues demonstrated comparable high-affinity binding to multivalent GalNAc(19) BSA. These data provide evidence for relative gene and conformational regulation of the E.dispar lectin.  相似文献   

7.
The glycosylphosphatidylinositol (GPI) moiety is one of the ways by which many cell surface proteins, such as Gal/GalNAc lectin and proteophosphoglycans (PPGs) attach to the surface of Entamoeba histolytica, the agent of human amoebiasis. It is believed that these GPI-anchored molecules are involved in parasite adhesion to cells, mucus and the extracellular matrix. We identified an E. histolytica homolog of PIG-M, which is a mannosyltransferase required for synthesis of GPI. The sequence and structural analysis led to the conclusion that EhPIG-M1 is composed of one signal peptide and 11 transmembrane domains with two large intra luminal loops, one of which contains the DXD motif, involved in the enzymatic catalysis and conserved in most glycosyltransferases. Expressing a fragment of the EhPIG-M1 encoding gene in antisense orientation generated parasite lines diminished in EhPIG-M1 levels; these lines displayed reduced GPI production, were highly sensitive to complement and were dramatically inhibited for amoebic abscess formation. The data suggest a role for GPI surface anchored molecules in the survival of E. histolytica during pathogenesis.  相似文献   

8.
The parasite Entamoeba histolytica colonizes the human intestine causing amoebic colitis and disseminates through the vascular route to form liver abscesses. The Gal/GalNAc lectin is an adhesion protein complex which sustains tissue invasion by E. histolytica. Disruption of the Gal/GalNAc lectin function in engineered parasites (HGL-2 trophozoites) changed the pathophysiology of hamster liver abscess formation. HGL-2 trophozoites produced numerous small inflammatory foci located in the vicinity of blood vessels. The low penetration of HGL-2 trophozoites into hepatic tissue was shown to be associated with weak attraction of neutrophils and macrophages to the infiltrated areas and absence of pro-inflammatory tumour necrosis factor, in contrast to wild type or control vector infections. The low host inflammatory response in HGL-2 infections correlated with a delay in apoptosis of hepatic cells, whereas apoptosis of endothelial cells was not detected. Triggering of apoptosis in both host cell types most likely has a central role in modulating inflammation, a major landmark in hepatic amoebiasis. These data highlight the key role of the Gal/GalNAc lectin in initiation of E. histolytica hepatic infection.  相似文献   

9.
Entamoeba histolytica is the protozoan parasite responsible for human amoebiasis. During invasive amoebiasis, migration is an essential process and it has previously been shown that the pro-inflammatory compound tumour necrosis factor (TNF) is produced and that it has a migratory effect on E. histolytica . This paper focuses on the analysis of parasite signalling and cytoskeleton changes leading to directional motility. TNF-induced signalling was PI3K-dependent and could lead to modifications in the polarization of certain cytoskeleton-related proteins. To analyse the effect of TNF signalling on gene expression, we used microarray analysis to screen for genes encoding proteins that were potentially important during chemotaxis towards TNF. Interestingly, we found that elements of the galactose/N-acetylgalactosamine lectin (Gal/GalNAc lectin) were upregulated during chemotaxis as well as genes encoding proteins involved in cytoskeleton dynamics. The α-actinin protein appeared to be an important candidate to link the Gal/GalNAc lectin to the cytoskeleton during chemotaxis signalling. Dominant negative parasites blocked for Gal/GalNAc lectin signalling were no longer able to chemotax towards TNF. These results have given us an insight on how E. histolytica changes its cytoskeleton dynamics during chemotaxis and revealed the capital role of PI3K and Gal/GalNAc lectin signalling in chemotaxis.  相似文献   

10.
Adherence ofEntamoeba histolytiea trophozoites to host cells is medicated by a galactose (Gal) andN-acetylgalactosamine (GalNAc)-specific surface lectin. The lectin is a heterodimeric protein composed of heavy (170kDa) and light (35-31 kDa) subunits linked by disulfide bonds. Polyclonal and monoclonal antibodies (mAb) raised against a light subunit-glutathione-S-transferase fusion protein were used to probe its structure and function. Four light subunit-specific mAb were produced which recognized distinct epitopes on five different light subunit isoforms. Immunoblots with these mAb demonstrated co-migration of light and heavy subunits when nonreduced trophozoite proteins were analysed by SDS-PAGE, indicating that the subunits do not exist free of the heterodimer in significant quantities. While anti-heavy subunit antibodies had previously been shown to alter adherence, anti-light subunit antibodies did not, suggesting that the heavy subunit contains the carbohydrate recognition domain.  相似文献   

11.
The addition of glycosylphosphatidylinositol (GPI) anchors to proteins occurs by a transamidase-catalyzed reaction mechanism soon after completion of polypeptide synthesis and translocation. We show that placental alkaline phosphatase becomes efficiently GPI-anchored when translated in the presence of semipermeabilized K562 cells but is not GPI-anchored in cell lines defective in the transamidase subunit hGpi8p. By studying the synthesis of placental alkaline phosphatase, we demonstrate that folding of the protein is not influenced by the addition of a GPI anchor and conversely that GPI anchor addition does not require protein folding. These results demonstrate that folding of the ectodomain and GPI addition are two distinct processes and can be mutually exclusive. When GPI addition is prevented, either by synthesis of the protein in the presence of cell lines defective in GPI addition or by mutation of the GPI carboxyl-terminal signal sequence cleavage site, the substrate forms a prolonged association with the transamidase subunit hGpi8p. The ability of the transamidase to recognize and associate with GPI anchor signal sequences provides an explanation for the retention of GPI-anchored protein within the ER in the absence of GPI anchor addition.  相似文献   

12.
13.
The galactose and N-acetyl-D-galactosamine-inhibitable adherence lectin of Entamoeba histolytica is a cell surface protein which mediates parasite adherence to human colonic mucus, colonic epithelial cells, and other target cells. The amebic lectin was purified in 100-micrograms quantities from detergent-solubilized trophozoites by monoclonal antibody affinity chromatography. The adherence lectin was purified 500-fold as judged by radioimmunoassay. The nonreduced lectin had a molecular mass of 260 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of pH 6.2. The amebic lectin reduced with beta-mercaptoethanol consisted of 170- and 35-kDa subunits. Both subunits could be labeled on the cell surface with 125I, and both were metabolically labeled with [3H]glucosamine. The amino termini of the subunits had unique amino acid sequences, and polyclonal antisera to the heavy subunit did not cross-react with the light subunit. The yield of phenylthiohydantoin derivatives from the second and third positions in the sequence of the heavy and light subunits gave a molar ratio of one 170- to one 35-kDa subunit. Antibodies directed to the heavy subunit inhibited amebic adherence to Chinese hamster ovary cells by 100%, suggesting that the heavy subunit is predominantly responsible for mediating amebic adherence.  相似文献   

14.
15.
Contact-dependent killing and phagocytosis of target cells by Entamoeba histolytica trophozoites is mediated by the galactose (Gal) and N-acetyl-d-galactosamine (GalNAc)-inhibitable lectin. Previous work has suggested that this lectin functions as part of a signal transduction complex. To identify proteins that might be part of this complex, amebic trophozoites were bound to GalNAc-BSA-labeled magnetic beads and lysed. Bound proteins were eluted from the beads and analyzed by tandem mass spectrometry. Along with the Gal/GalNAc lectin subunits, several cytoskeletal proteins, potential signaling proteins, and a novel transmembrane protein, consistently purified with the GalNAc-BSA beads.  相似文献   

16.
We studied galactose (Gal)-specific binding of the soluble purified 260-kDa Entamoeba histolytica adherence protein to glycosylation deficient Chinese hamster ovary (CHO) cell mutants. Our goal was to further define the lectin's functional activity and carbohydrate receptor specificity. The adherence protein was purified by acid elution from an immunoaffinity column; however, exposure of the surface membrane lectin on viable trophozoites to identical acid pH conditions had no effect on carbohydrate binding activity. Saturable Gal-specific binding of soluble lectin to parental CHO cells was demonstrated at 4 degrees C by radioimmunoassay; the dissociation coefficient (Kd) was 2.39 x 10(-8) M-1 with 5.97 x 10(4) lectin receptors present per CHO cell. Gal-specific binding of lectin to Lec2 CHO cell mutants, which have increased N- and O-linked terminal Gal residues on cell surface carbohydrates, was increased due to an enhanced number of receptors (2.41 x 10(5)/cell) rather than a significantly reduced dissociation constant (4.93 x 10(-8) M-1). At 4 degrees C, there was no measurable Gal-specific binding of the adherence protein to the Lec1 and 1dlD.Lec1 CHO mutants, which contain surface carbohydrates deficient in terminal Gal residues. Binding of lectin (20 micrograms/ml) to CHO cells was equivalent at 4 degrees C and 37 degrees C and unaltered by adding the microfilament inhibitor, Cytochalasin D (10 micrograms/ml). Gal-specific binding of the lectin at 4 degrees C was calcium independent and reduced by 81% following adsorption of only 0.2% of the lectin to CHO cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
We identified in the Entamoeba histolytica genome a family of over 80 putative transmembrane kinases (TMKs). The TMK extracellular domains had significant similarity to the intermediate subunit (Igl) of the parasite Gal/GalNAc lectin. The closest homolog to the E. histolytica TMK kinase domain was a cytoplasmic dual-specificity kinase, SplA, from Dictyostelium discoideum. Sequence analysis of the TMK family demonstrated similarities to both serine/threonine and tyrosine kinases. TMK genes from each of six phylogenetic groups were expressed as mRNA in trophozoites, as assessed by spotted oligoarray and real-time PCR assays, suggesting nonredundant functions of the TMK groups for sensing and responding to extracellular stimuli. Additionally, we observed changes in the expression profile of the TMKs in continuous culture. Antisera produced against the conserved kinase domain identified proteins of the expected molecular masses of the expressed TMKs. Confocal microscopy with anti-TMK kinase antibodies revealed a focal distribution of the TMKs on the cytoplasmic face of the trophozoite plasma membrane. We conclude that E. histolytica expresses members of each subgroup of TMKs. The presence of multiple receptor kinases in the plasma membrane offers for the first time a potential explanation of the ability of the parasite to respond to the changing environment of the host.  相似文献   

19.
Exchanging the glycophosphatidylinositol (GPI) anchor signal sequence of neural cell adhesion molecule (NCAM) for the signal sequence of carcinoembryonic antigen (CEA) generates a mature protein with NCAM external domains but CEA-like tumorigenic activity. We hypothesized that this resulted from the presence of a functional specificity signal within this sequence and generated CEA/NCAM chimeras to identify this signal. Replacing the residues (GLSAG) 6-10 amino acids downstream of the CEA anchor addition site with the corresponding NCAM residues resulted in GPI-anchored proteins lacking the CEA-like biological functions of integrin modulation and differentiation blockage. Transferring this region from CEA into NCAM in conjunction with the upstream proline (PGLSAG) was sufficient to specify the addition of the CEA anchor. Therefore, this study identifies a novel specificity signal consisting of six amino acids located within the GPI anchor attachment signal, which is necessary and sufficient to specify the addition of a particular functional GPI anchor and, thereby, the ultimate function of the mature protein.  相似文献   

20.
Trophozoites of the parasitic protozoa, Entamoeba histolytica, synthesize a cell surface lipoglycoconjugate, termed lipophosphoglycan, which is thought to be an important virulence factor and potential vaccine candidate against invasive amebiasis. Here, we show that the E. histolytica lipophosphoglycans are in fact glycosylphosphatidylinositol (GPI)-anchored proteophosphoglycans (PPGs). These PPGs contain a highly acidic polypeptide component which is rich in Asp, Glu and phosphoserine residues. This polypeptide component is extensively modified with linear glycan chains having the general structure, [Glcalpha1-6](n)Glcbeta1-6Gal (where n=2-23). These glycan chains can be released after mild-acid hydrolysis with trifluoroacetic or hydrofluoric acid and are probably attached to phosphoserine residues in the polypeptide backbone. The PPGs are further modified with a GPI anchor which differs from all other eukaryotic GPI anchors so far characterized in containing a glycan core with the structure, Gal(1)Man(2)GlcN-myo-inositol, and in being heterogeneously modified with chains of alpha-galactose. Trophozoites of the pathogenic HM-1:IMSS strain synthesize two distinct classes of PPG which have polydisperse molecular masses of 50-180 kDa (PPG-1) and 35-60 kDa (PPG-2) and are modified with glucan side-chains of different average lengths. In contrast, the non-pathogenic Rahman strain synthesizes one class of PPG which is only elaborated with short disaccharide side-chains (i.e. Glcbeta1-6Gal). However, the PPGs are abundant in all strains (8x10(7) copies per cell) and are likely to form a protective surface coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号