首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fluorescence polarization measurements with the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) were performed to detect changes in the fluidity of plasma membranes from T-lymphocytes stimulated with mitogens. When the cells were incubated with succinyl-concanavalin A an increase in fluorescence polarization was observed. This, however, could be shown to be due to the interaction of the mitogen with the label DPH and did not reflect changes in the plasma membrane. In purified plasma membranes a decrease rather than an increase of fluorescence polarization was observed.  相似文献   

2.
The lipophilic fluorescent probe DPH, generally used to determine the microviscosity of membrane lipids, has been visualized in intact cells by fluorescence microscopy. All lipid material of the cells, including cytoplasmic lipid droplets, was found to be labelled with DPH. The fluorescent signal from inside the cells contributes to a large extent to the total cell fluorescence. The results indicate that fluorescence polarization data obtained from intact cells, using DPH as probe, give information on the total lipid material of the cells rather than exclusive information on microviscosity and fluidity of plasma membranes of these cells, as has been repeatedly suggested.  相似文献   

3.
We have previously demonstrated age-related differences in human lymphocyte membrane fluidity, by use of steady-state polarization measurements on bulk cell suspensions with the fluorescence probe DPH. However, for exact analysis of the possible functional importance of these changes, single-cell measurements were deemed of interest. We have now used an analog division device to measure fluorescence depolarization "p" of DPH in real time with a FACS III flow cytometer. The measurements are reliable, as we have been able to confirm the differences in DPH "p" between monocytes and lymphocytes previously shown in bulk suspension and to demonstrate the expected differences in fluidity of lipid-modulated cells. We also found significant differences in DPH "p" between lymphocytes of young and elderly blood donors. Lymphocyte subsets did not differ in polarization values but did differ in fluorescence intensity with Th less than Ts less than B = NK cells.  相似文献   

4.
Steady-state fluorescence polarization measurements obtained with a flow cytometer were compared with those obtained with an SLM subnanosecond fluorometer. Measurements were made over time after exposure of HeLa cells to the membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), or [12-(9:anthroyloxy) stearate (12-AS). After 1 min, anisotropy values of 0.28 (DPH), 0.28 (TMA-DPH), and 0.21 (12-AS) were obtained. Thereafter, the anisotropy of DPH- and 12-AS-labelled cells rapidly decreased (0.18 and 0.12 after 5 min), while that of TMA-DPH-labelled cells changed only slightly (0.27 after 30 min), suggesting that DPH and 12-AS, unlike TMA-DPH, do not remain anchored in the HeLa plasma membrane, but translocate to more fluid environments inside the cell. These suggestions were confirmed by visual observation with fluorescence microscopy. There was no significant difference between the results obtained with the flow cytometer and those obtained with the fluorometer.  相似文献   

5.
We have characterized the measurement of fluorescence polarization on single cells using an EPICS V cell sorter. A critical analysis is made of the balancing and calibration of the system. The system is highly linear for polarization measurements. Cellular membranes were labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH) to measure membrane fluidity. Fluorescence polarization histograms had coefficients of variation as low as 7%. Cells labeled with DPH after 24 hr incubation in medium lacking serum showed a significantly higher fluorescence polarization than cells in medium containing serum. The fluorescence polarization measured at 15 degrees C was 0.311 compared to 0.270 at 25 degrees C for cells labeled with DPH, verifying that temperature affects the membrane fluidity as measured by flow cytometry.  相似文献   

6.
Fluorescence polarization measurements on a FACS II cell sorter were compared with static measurements on a spectrofluorimeter using calibration solutions and Hoechst 33258-labeled cells. For the flow cytometric measurements on the FACS we used a pseudodepolarizer for normalization of the output of the two photomultipliers. The results showed that fluorescein and fluoresceinated bovine serum albumin (BSA) solutions gave identical values on both instruments. The mean value for fluorescence polarization of Hoechst 33258-labeled cells as measured on the FACS was the same as the value obtained with the spectrofluorimeter. Subsequently the fluorescence polarization of six different membrane probes was determined using differentiating embryonal carcinoma cells as a model system. Differentiation was induced by treatment of the cells with retinoic acid together with cyclic AMP. With diphenylhexatriene (DPH) the fluorescence polarization increased from I/I = 1.55 to 1.74 upon differentiation. With a charged analog of DPH (TMA-DPH) fluorescence polarization increased from I/I = 1.87 to 2.02. No appreciable changes in fluorescence polarization were observed in this cell system when anthroyloxysterate probes (12-AS, 9-AS, 6-AS, 2-AS) were used.  相似文献   

7.
A study of the fluorescence polarization and fluorescent lifetimes of 1,6 diphenyl hexatriene in human normal and leukaemic lymphocytes, lymphocyte plasma membranes and liposomes from the plasma membranes failed to reveal any fluidity differences which could be attributed to the leukaemic transformation. The plasma membranes were more viscous than the whole cells, and on average the liposomes were only 57% as viscous as the plasma membranes from which they were prepared. The average fluorescent lifetime of DPH in the liposomes was 7.9 nanoseconds as opposed to 9.7 in the plasma membrane. The polarization degree of DPH in the lymphocytes was much lower and more variable than that of DPH in platelets, polymorphonuclear leucocytes or erythrocyte membranes.  相似文献   

8.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Mero-cyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both  相似文献   

9.
Time-resolved fluorescence anisotropy (TRFA) and steady-state anisotropy measurements and fluorescence intensification microscopic observations were made on RAW264 macrophages labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH) or 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Microscopic analysis revealed that the fluorescent probe DPH was found in association with plasma membranes and small vesicles. Macrophages treated with immune complexes could not be distinguished from untreated cells, indicating that the same membrane compartments were labeled. The probe TMA-DPH was exclusively localized to the plasma membrane. Steady-state anisotropy measurements indicated that in vitro culture conditions did not significantly affect membrane fluidity. TRFA measurements were conducted to determine the physical properties of macrophage membranes during immune recognition and endocytosis. Data were analyzed by iterative deconvolution to yield phi, the rotational correlation time, and r infinity, the limiting anisotropy. These parameters may be interpreted as the "fluidity" and order parameter of the membrane environment, respectively. Typical values for untreated macrophages were phi = 7.8 ns and r infinity = 0.12. Binding and endocytosis of immune complexes prepared in 4-fold antigen excess increase these values to phi = 22.1 ns and r infinity = 0.15. However, receptor-independent phagocytosis of latex beads decreases these values to phi = 2.2 ns and r infinity = 0.10. Addition of catalase before, but not after, immune complex incubation with cells diminishes the effect upon membrane structure, suggesting that H2O2 participates in fluidity changes. Pretreatment of macrophages with the membrane-impermeable sulfhydryl blocker p-(chloromercuri)benzenesulfonic acid also diminished these effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

11.
DPH标记细胞膜的动力学与膜脂流动性的荧光偏振校正测量   总被引:1,自引:0,他引:1  
用稳态荧光技术测得经过校正的荧光成分,由此算出用DPH标记的细胞膜的偏振度。方法是作荧光偏振值在随时间变化的曲线,将其外推至零标记时间求出该时间的荧光偏振值。用此法测定了艾氏腹水癌细胞的膜流动性。结果表明流动性比用整个细胞测得之值小,说明膜脂的有序程度和包装密度比胞浆中的脂大。实验结果和用三房空模型分析所得的理论值符合较好,提示荧光探剂的标记过程主要受分子扩散所控制。  相似文献   

12.
Charged anesthetics selectively alter plasma membrane order   总被引:5,自引:0,他引:5  
W D Sweet  W G Wood  F Schroeder 《Biochemistry》1987,26(10):2828-2835
Although indirect evidence supporting differential lipid fluidity in the two monolayers of plasma membranes has accumulated, unambiguous demonstration of this difference has been difficult to obtain. In the present study, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), selective quenching of fluorescence by trinitrophenyl groups, and differential polarized phase fluorescence techniques were used to directly examine the static (order) and dynamic (rotational rate) components of lipid motion in the exofacial and cytofacial leaflets of LM fibroblast plasma membranes. The limiting anisotropy (0.137), the order parameter (0.590), and the rotational relaxation time (1.20 ns) of DPH in the plasma membranes (inner plus outer leaflet) indicated rapid but restricted probe motion in the lipid environment. However, the statics and dynamics of DPH motion in the individual monolayers were significantly (p less than 0.025) different. The limiting anisotropy, order parameter, and rotational relaxation time of DPH in the cytofacial monolayer were 0.036, 0.08, and 0.16 ns, respectively, greater than calculated for the exofacial monolayer of the LM plasma membrane. At appropriate concentrations, phenobarbital and, to a lesser degree, pentobarbital preferentially reduced the limiting anisotropy of DPH calculated for the exofacial leaflet while prilocaine reduced the limiting anisotropy of DPH in the cytofacial leaflet of LM fibroblast plasma membranes. In contrast, the putative cytofacial anesthetic procaine failed to show any preference for either leaflet. Arrhenius plots of DPH fluorescence in LM plasma membranes showed a prominent characteristic break point near 30-32 degrees C. Phenobarbital, pentobarbital, and procaine did not affect this break point while prilocaine selectively abolished it. The break point was therefore assigned to the inner monolayer of the LM plasma membrane.  相似文献   

13.
Measurement of multiple fluorescence decay times of 1,6-diphenyl-1,3,5-hexatriene (DPH) in membranes can in principle be used to investigate structural domains of lipid bilayers. To assess the feasibility of this approach using phase and modulation techniques, we reduced experimental errors specifically associated with performing these measurements on membrane suspensions (probe self-quenching, background fluorescence, turbidity-induced artifacts) and determined empirically the level of precision thereby obtainable. Next we used these precision limits in theoretical calculations to conclude that the ratio of two coexisting decay times must exceed 1.3 if they are to be resolved with reliable accuracy. To demonstrate that such resolutions could be accomplished experimentally in membrane suspensions, three approaches were taken. First, the fluorescence decay of aqueous quinine sulfate quenched by chloride ion was resolved from that of membrane-associated DPH as long as the lifetime ratios of these two fluorophores exceeded the predicted value. Second, populations of DPH-containing lipid vesicles with single (or nearly single) decay times were mixed together, and when there were only two major lifetime components that differed by more than 30%, the resulting heterogeneous fluorescence could be resolved into the two expected lifetime components. Finally, DPH fluorescence decay measurements were correlated with phase behavior in well-characterized lipid systems, revealing a short lifetime component of DPH fluorescence associated with gel-phase lipid vesicles. From these studies, we conclude that only in special cases can co-existing gel and fluid phases be resolved by means of DPH lifetime heterogeneity, within the limits of precision defined herein.  相似文献   

14.
Abstract: High concentrations of halothane stimulate the degradation of sphingomyelin by neutral sphingomyelinase bound to synaptosomal plasma membranes (SYM) from calf brain up to 50-fold, and increase membrane fluidity dramatically as measured by fluorescence depolarisation of incorporated 1,6-diphenylhexatriene (DPH). To investigate the effects of low concentrations of halothane clinical conditions of anaesthesia were simulated in vitro by gassing a suspension of SYM with a gas mixture of 1.5 and 3% (by vol.) of [14C]halothane in N2 at 37°C. The uptake of halothane into SYM as determined by radioactivity measurements was 31 and 73 mmol per mol membrane lipid or 4 and 9 mg per g membrane, respectively. The same concentrations of halothane in the membrane suspensions increased membrane fluidity of SYM significantly as shown by measurements of fluorescence depolarisation of in-corporated DPH. At halothane concentrations corresponding to 1.5 and 3% (by vol.) in the gas phase the degradation of sphingomyelin by membrane-bound neutral sphingomyelinase of SYM was stimulated by 11 and 57% of controls, respectively. These results are discussed in relation to the anaesthetic potential of halothane. Key words: Synaptosomal plasma membranes-Membrane-bound neutral sphingomyelinase-Membrane fluidity-Halothane-Clinical concentrations.  相似文献   

15.
Fluorescence measurements of 1,6-diphenyl-1,3,5-hexatriene (DPH) in large unilamellar phospholipid vesicles were performed to characterize the influence of the membrane physical properties on the short-lived lifetime component of the fluorescence decay. We have found that the short-lived component of DPH significantly shortens when the membrane undergoes a temperature-induced phase transition as it is known for the long-lived component of DPH. We induced membrane phase transitions also by alcohols, which are reported to be distributed different way in the membrane–ethanol close to the membrane-water interface and benzyl alcohol in the membrane core. A different effect of the respective alcohol on the short and long decay component was observed. Both the time-resolved fluorescence spectra of DPH taken during lipid vesicle staining and the lifetime dependences caused by changes of temperature and/or induced by the alcohols show that the short-lived fluorescence originates from the population of dye molecules distributed at the membrane–water interface.  相似文献   

16.
Differential polarized phase fluorometry has been used to investigate the depolarizing rotations of 1,6-diphenyl-1,3,5-hexatriene (DPH) in isotropic solvents and in lipid bilayers. For DPH dissolved in isotropic solvents, there is a precise agreement between the observed and predicted values for maximum differential tangents, indicating that in these media DPH is a free isotropic rotator. In lipid bilayers the tangent defects (i.e., the differences between the calculated and the observed maximum differential tangents) are too large to be explained by anisotropy in the depolarizing rotations but are accounted for by hindered isotropic torsional motions for the fluorophore [Weber, G (1978) Acta Phys. Pol A 54, 173]. This theory describes the depolarizing rotations of the fluorophore by its rotational rate R (in radians/second) and the limiting fluorescence anisotropy (r) at times long compared with the fluorescence lifetime. Through the combined use of both steady-state anisotropy measurements and differential phase measurements, we have demonstrated that one may obtain unique solutions for both R and r. For DPH embedded in vesicles prepared from dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholines, the depolarizing motions are highly hindered at temperatures below the transition temperature (Tc) but are unhindered above Tc. The apparent rotational rates of the probe do not change significantly at Tc. These data suggest that the changes observed in the steady-state anisotropy near Tc derive primarily from changes in the degree to which the probe's rotations are hindered, and only to a small extent from changes in rotational rate. For DPH embedded in bilayers that contained 25 mol % cholesterol, no clear transition occurred and the rotations appeared to be hindered at all temperatures. The rotational motions of DPH embedded in dioleolyphosphatidylcholine were found to be far less hindered, but the rotational rates were similar to those obtained in the saturated phosphatidylcholines. Finally, the data show that in an anisotropic environment, such as that of a lipid bilayer, steady-state fluorescence anisotropy measurements alone cannot yield quantitatively meaningful rotational rates. Extrapolation of steady-state aniosotropy data to the quantitation of membrane viscosity is therefore difficult, if not invalid; however, qualitative comparisons can be useful.  相似文献   

17.
Trimethylamino-diphenylhexatriene (TMA-DPH), a novel hydrophobic fluorescent probe with relevant photophysical properties for fluorescence anisotropy measurements in phospholipidic membranes, specifically labels the plasma membranes of whole living-cells, unlike earlier commonly used probes such as 1,6-diphenyl-1,3,5-hexatriene (DPH) and anthroyloxy fatty acids, which invade all hydrophobic regions of the cell. Using TMA-DPH, it was shown that mouse malaria parasite Plasmodium berghei induced a statistically highly significant increase (8%) in the plasma membrane fluidity of the host erythrocyte. The physical factors, which might critically influence the measurements in this study, i.e. the fluorescence lifetime of the probe and the contribution of scattered light, were carefully controlled. The effect observed is discussed on the basis of earlier established metabolic changes in the membrane following infection, namely phospholipidic and cytoskeleton modifications.  相似文献   

18.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

19.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the alteration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.  相似文献   

20.
Administration of high-dose ethinylestradiol to rats decreases bile flow, Na,K-ATPase specific activity, and liver plasma membrane fluidity. By use of highly purified sinusoidal and bile canalicular membrane fractions, the effect of ethinylestradiol administration on the protein and lipid composition and fluidity of plasma membrane fractions was examined. In sinusoidal fractions, ethinylestradiol (EE) administration decreased Na,K-ATPase activity (32%) and increased activities of alkaline phosphatase (254%), Mg2+-ATPase (155%), and a 160-kDa polypeptide (10-fold). Steady-state and dynamic fluorescence polarization was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH) was significantly higher in canalicular compared to sinusoidal membrane fractions. Ethinylestradiol (5 mg/kg per day for 5 days) selectively increased sinusoidal polarization values. Similar changes were demonstrated with the probes 2- and 12-anthroyloxystearate. Time-resolved fluorescence polarization measurements indicated that EE administration for 5 days did not change DPH lifetime but increased the order component (r infinity) and decreased the rotation rate (R). However, 1 and 3 days after EE administration and with low doses (10-100 micrograms/kg per day for 5 days) the Na,K-ATPase, bile flow, and order component were altered, but the rotation rate was unchanged. Vesicles prepared from total sinusoidal membrane lipids of EE-treated rats, as well as phospholipid vesicles, demonstrated increased DPH polarization, as did intact plasma membrane fractions. Liver plasma membrane fractions showed no change in free cholesterol or cholesterol/phospholipid molar ratio, while esterified cholesterol content was increased with high-dose but not low-dose ethinylestradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号