首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lymphoid cells obtained from the C3H/HeJ mouse strain respond abnormally to LPS in vitro, as shown by the fact that they are unable to make a mitogenic response to some LPS preparations and make only a low mitogenic response to other LPS preparations. In contrast, cells from a closely related C3H substrain, the C3H/St, are highly responsive to both types of LPS preparations. Experiments were carried out to determine the cellular basis of these genetically determined LPS response differences. This question was approached by studying the mitogenic response to LPS in cultures containing mixtures of various combinations of B cells, T cells, and macrophages from C3H/HeJ and C3H/St mice. Experiments utilizing an LPS preparation to which the C3H/HeJ is totally unresponsive (negative LPS) revealed, first, that either spleen cells, or partially purified T cells and/or macrophages obtained from C3H/St, could not restore the ability of C3H/HeJ spleen cells to respond to LPS, indicating that the C3H/HeJ is not deficient in an LPS-specific helper cell population which may be required for mitogenesis. Secondly, the addition of either spleen cells or partially purified T cells or macrophages from the C3H/HeJ to spleen cells from the C3H/St did not inhibit the mitogenic response to LPS, suggesting that the presence of suppressor cell activity is also not involved. Experiments analogous to those described, except utilizing another LPS preparation to which the C3H/HeJ is partially responsive (positive LPS), also failed to demonstrate reconstitutive or suppressive effects when C3H/HeJ and C3H/St spleen cells were admixed. The results obtained indicate that the defect in the C3H/HeJ mouse strain that limits its responsiveness to positive LPS and which renders it totally unresponsive to negative LPS appears to be an intrinsic defect in the capacity of B cells to react to the mitogenic stimulus of LPS.  相似文献   

2.
Previous studies have shown that the activation of murine macrophages to a fully tumoricidal state requires that specific environmental signals be delivered to the macrophage in a step-wise manner: a "priming" signal first renders the macrophage stimulated, but not cytolytic. The addition of a second or "trigger" signal to the primed macrophage results in tumoricidal activity. One potent priming signal has been identified as IFN-gamma and one often used trigger signal for endotoxin-responsive (Lpsn) macrophages is LPS. In contrast to LPS-responsive macrophage, rIFN-gamma-primed C3H/HeJ (Lpsd) macrophages fail to become cytolytic in response to protein-free, phenol-water-extracted LPS preparations, but become tumoricidal when exposed in vitro to protein-rich butanol-extracted LPS or purified lipid A-associated proteins. Further characterization of the activation requirements of the C3H/HeJ macrophages revealed that for optimal elaboration of TNF in vitro, two signals were also required: rIFN-gamma and a second signal that contained LAP. C3H/HeJ macrophages macrophages primed with rIFN-gamma failed to produce TNF in response to any concentration of protein-free phenol-water extracted LPS, even when supernatants were concentrated before assaying for functional activity in a standard TNF L929 fibroblast assay. Although exposure of rIFN-gamma-primed C3H/HeJ macrophages to LAP resulted in a fully tumoricidal state equivalent to that exhibited by C3H/OuJ macrophages, the levels of TNF produced remained discrepant. Under identical conditions, C3H/OuJ macrophages produced approximately fivefold more TNF (11,776 U/ml) than C3H/HeJ macrophages (2,399 U/ml). This suggests that although C3H/HeJ macrophages can respond functionally in a "normal" manner given the correct signals, they remain quantitatively deficient in the production of certain proteins. In this system, the elaboration of TNF and macrophage-mediated tumor cell lysis were shown to be dissociable events. The tumor target used in these studies (P815) was shown to be resistant to as much as 40,000 U/ml of purified rTNF. In addition, C3H/OuJ macrophage cultures exposed to LPS only (which resulted in the production of high levels of TNF), failed to lyse these targets. Lastly, anti-mouse TNF antibody added to macrophage cultures had no effect on the induction of tumor cell lysis.  相似文献   

3.
Defective tumoricidal capacity of macrophages from C3H/HeJ mice   总被引:19,自引:0,他引:19  
Peritoneal macrophages from C3H/HeN mice treated i.p. with T cell mitogens or viable BCG organisms were cytotoxic to syngeneic tumor cells in vitro. Macrophages from endotoxin-unresponsive C3H/HeJ mice treated with BCG or T cell mitogens, however, were not tumoricidal. Furthermore, unlike cells from C3H/HeN mice, macrophages from C3H/HeJ mice could not be activated for tumor cytotoxicity after in vitro treatment with bacterial endotoxins or with lymphokine-rich supernatants. The subnormal induction of cytotoxic macrophages after in vitro or in vivo treatments in C3H/HeJ mice appears to be a highly selective defect. Macrophage responses (yield, phagocytosis, or peroxidase staining) in inflammatory exudates induced by BCG, T cell mitogens, or heterologous serum in C3H/HeJ or C3H/HeN mice were identical. C3H/HeJ macrophages also responded normally in vitor to chemotactic lymphokines. Thus, C3H/HeJ macrophages possess a profound and selective defect in tumoricidal capacity. This defect was not dependent upon exogenous endotoxins. Defective macrophage cytotoxic responses may reflect non-LPS related functions regulated by the LPS gene.  相似文献   

4.
C3H/HeJ mice possess a genetic lesion that renders them significantly less responsive to the biologic effects of protein-free lipopolysaccharide (LPS) preparations, and more specifically, to the lipid A region of the LPS molecule. The in vivo manifestations of this mutation are also reflected in vitro in that cells derived from this mouse strain fail to respond to LPS when compared with cells derived from fully endotoxin-responsive mouse strains. The precise nature of this gene defect has not yet been established. In this study, we have examined in vitro the biologic activities of a structurally less complex "lipid A precursor" molecule, produced by a conditionally lethal, temperature-sensitive mutant of Salmonella typhimurium. In contrast to the intact LPS or wild-type lipid A extracted from the parental strain of Salmonella typhimurium, the lipid A precursor induced a highly significant, polymyxin B-inhibitable mitogenic response in splenic cultures derived from LPS-hyporesponsive C3H/HeJ and C57BL/10ScN (nu/nu) mice. In addition, the lipid A precursor was found to stimulate cultures of C3H/HeJ macrophages to produce significant levels of both interleukin 1 (IL 1, previously referred to as "lymphocyte activating factor" or "LAF") and prostaglandins of the E series (PGE). These findings suggest the possibility that the defect in endotoxin responsiveness exhibited by C3H/HeJ mice may be related to a defect in the processing of wild-type lipid A or LPS to a suitably stimulatory form that is structurally related to the lipid A precursor molecule.  相似文献   

5.
We have investigated the relative immunostimulatory activities of S-chemotype LPS and R-chemotype LPS preparations on C3H/HeJ peritoneal macrophages in vitro. As assessed by either secretion of TNF-alpha or IL-1, some of the R-chemotype LPS manifest significant activity on these normally LPS-unresponsive cells. The expression of IL-1 activity by R-LPS-stimulated C3H/HeJ macrophages was unaffected by IFN-gamma; however, this cytokine significantly enhanced TNF-alpha production by the same cells. The R-chemotype LPS preparations alone were not able to activate C3H/HeJ macrophages to become tumoricidal but activity could readily be demonstrated in the presence of IFN-gamma. Of potential importance is the observation that the profile of relative activity of the various R-chemotype LPS preparations for macrophage activation does not parallel that previously obtained by us for the C3H/HeJ B-lymphocyte activation.  相似文献   

6.
Induction of activated macrophages in C3H/HeJ mice by avirulent Salmonella   总被引:3,自引:0,他引:3  
A single injection of viable Salmonella typhimurium SL3235, an avirulent organism blocked in the aromatic pathway, induced the generation of activated peritoneal macrophages in three different C3H mouse strains, including macrophage-defective C3H/HeJ mice. Macrophages obtained from immunized mice were cytotoxic for B16 melanoma cells, P815 mastocytoma cells, and TU-5 fibrosarcoma cells and microbicidal in vitro for the obligate, intracellular, protozoan parasite Leishmania major. The capacity of live SL3235 to activate C3H/HeJ macrophages contrasts with the failure of live Bacillus Calmette-Guérin to induce activated macrophages in this mouse strain. Although viable SL3235 were capable of fully activating cells of both normal and defective mice, a dose-dependent difference was observed in the number of organisms necessary for induction of tumoricidal macrophages in C3HeB/FeJ (normal) and C3H/HeJ (defective) animals. As few as 80 viable SL3235 were capable of activating C3HeB/FeJ macrophages whereas 5 X 10(4) organisms were required to activate C3H/HeJ macrophages. Maximal macrophage activation occurred 7 to 10 days after SL3235 inoculation in C3H/HeJ and C3HeB/FeJ mice. Acetone-killed cells of SL3235 had some but not all of the activity of the living Salmonella. A single in vivo injection of the nonviable preparation resulted in the induction of tumoricidal macrophages in C3HeB/FeJ but not in C3H/HeJ mice, even when tested over a wide dosage range. Injection of acetone-killed cells of SL3235 did, however, result in a population of primed macrophages in C3H/HeJ mice, as explanted cells could be induced to express activated macrophage effector activities after additional treatment in vitro with either LPS or IFN-gamma. Thus, in vivo administration of viable SL3235 is, by itself, capable of eliciting the full series of steps required for activation of C3H/HeJ macrophages, whereas killed SL3235 only provides signals sufficient to prime these defective macrophages for further activation in vitro. AI 15613  相似文献   

7.
The rate of glucose utilization has been used as a measure of LPS-induced activation of cultures of C3H/HeN and C3H/HeJ spleen cells, peritoneal cells, and purified peritoneal adherent cells. Peritoneal cells utilized 40 to 60 times more glucose than did spleen cells and purified adherent monolayers were more active than mixed peritoneal cells, suggesting that only macrophage metabolism was being measured. The cell preparations for C3H/HeJ mice were not activated by Escherichia coli K235 LPS prepared by extensive phenol extraction, whereas C3H/HeN cells were activated by the LPS. Cells from both strains were activated by a commercially obtained E. coli 0111:B4 LPS and butanol-extracted K235 LPS. The addition of 10% C3H/HeN spleen cells to C3H/HeJ peritoneal cells resulted in a marked enhancement of glucose utilization. These findings suggest that LPS-induced enhancement of macrophage metabolism occurs both by direct action of LPS on macrophages as well as indirectly through activated lymphocytes.  相似文献   

8.
Peritoneal macrophages of Lipopolysaccharide (LPS)-refractory C3H/HeJ mouse failed to express the mRNA coding interleukin 1 (IL-1) beta when stimulated by the Ca2+ ionophore A23187 or LPS, though macrophages of LPS-responsive C3H/He responded to these stimulants. These results suggest that the defect of the response in C3H/HeJ macrophages toward LPS stimulation may be related to the Ca2+-dependent signal pathway. The extracts from the C3H/HeJ macrophages showed normal activities of both protein kinase C (PKC) and calmodulin (CaM) in comparison with those from LPS-responsive C3H/He macrophages. However, one species of CaM-binding proteins could hardly be detected by the cross-linking assay with 125I-CaM in C3H/HeJ macrophages stimulated by LPS. These results suggest that the LPS-refractory site in C3H/HeJ macrophages is related to the lack of this CaM-binding protein, and the Ca2+-dependent CaM system may play an important role in the activation of cells by LPS.  相似文献   

9.
The lipid A moiety of bacterial lipopolysaccharide (LPS) elicits several types of responses in murine B lymphocytes. First, lipid A induces the nonproliferative expression of cell surface antigens in more immature cell types. Second, lipid A induces a mitogenic response in more mature B cell types. Lipid A induces the expression of Ia antigens on bone marrow cells from C3H/DiSn but not C3H/HeJ mice. The Ia-inducible cells possess surface immunoglobulin. Agents that elevate intracellular levels of adenosine 3',5'-cyclic monophosphate (cyclic AMP) induce the appearance of Ia antigens on B lymphocytes from both C3H/HeJ and C3H/DiSn mice, suggesting that lipid A exerts its inductive effects by increasing cyclic AMP levels in cells. In contrast to what is observed by using other strains of mice, mature B lymphocytes from C3H/HeJ mice do not support a mitogenic response to lipid A. The subpopulation of B lymphocytes in C3H/HeJ mice that normally respond mitogenically to LPS not only appear to lack an LPS-response mechanism utilized in the mitogenic pathway, but they lack the LPS-response pathway of the immature B cell types. A lipid A-bound protein (LAP) induces both the expression of Ia and a mitogenic response in the different subpopulations of B lymphocytes from C3H/HeJ and C3H/DiSn mice. The genetic defect in C3H/HeJ mice that limits responses to lipid A may be associated with a receptor that is normally expressed on many different cell types.  相似文献   

10.
We have examined the potential immunogenicity of viable lymphocytes from C3HeB/FeJ responder mice adoptively transferred into congenic nonirradiated C3H/HeJ nonresponder mice. Immunologic rejection or acceptance of donor cells was employed as indirect evidence for the presence or absence of an antigenically distinct "LPS receptor" present on donor lymphocytes. Immunogenicity was evaluated by in vitro assessment of the subsequent proliferative response of recipient splenocytes to protein-free LPS after multiple i.p. injections of responder lymphocytes. Control experiments have made use of syngeneic donor lymphocytes differing immunologically by the presence of the H-Y minor histocompatibility antigen. The results of these experiments provide evidence for the concept that if the phenotypic difference between LPS responder and nonresponder mice is also expressed antigenically in the form of an LPS receptor, that antigenic difference is significantly less immunogenic than a minor histocompatibility antigen.  相似文献   

11.
C3H/HeN and C3H/HeJ mice were infected ip with viable BCG, a macrophage-activating agent, and their peritoneal exudate macrophages exposed to Leishmania tropica amastigotes. Macrophages from BCG-infected C3H/HeN mice had both leishmanicidal activities described for lymphokine activation of C3H/HeN macrophages in vitro: increased resistance to L. tropica infection, followed by intracellular killing of the parasite. Macrophages from BCG-infected C3H/HeN mice were also activated to kill tumor cells in vitro. In contrast, macrophages from BCG-treated C3H/HeJ mice were not resistant to L. tropica infection, did not kill intracellular amastigotes over 72 hr in culture, and were not cytotoxic to tumor cells.  相似文献   

12.
13.
The aim of the present study was to compare the effects of LPS on the cellular composition of the splenic white pulp in responder C3H/He and non-responder C3H/HeJ mice. The present results show that an intravenous injection of LPS in C3H/He mice results in a number of prominent changes in the histology of the spleen, but none of these histological changes could be demonstrated in the unresponsive C3H/HeJ mice. However, the present study shows that LPS administration resulted in the disappearance of previously trapped immune complexes from the follicles in both responder C3H/He and non-responder C3H/HeJ mice. The significance of this phenomenon is discussed. The localization of intravenously injected LPS in both mouse strains was compared using an immunoperoxidase technique. Most of the injected LPS was taken up by marginal zone macrophages at 2 h after administration. No major differences could be detected in the localization pattern of LPS between C3H/He and C3H/HeJ mice. The present results support the suggestion that the genetically based unresponsiveness of C3H/HeJ mice could be due to an intracellular defect in their response to LPS.  相似文献   

14.
An avirulent strain of Salmonella, SL3235, has been shown to confer high levels of immunity on lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice. Immunized mice were also protected against challenge with Listeria monocytogenes, indicating that the Salmonella vaccine activates macrophages. It was shown that protection and macrophage activation occurred without correction of the LPS defect, as assessed by in vivo endotoxin toxicity, in vitro spleen cell mitogenicity, and the ability of in vivo treatment with LPS to enhance in vitro macrophage ingestion of C3b-coated erythrocytes. It is concluded that LPS responsiveness is neither a necessary nor a sufficient condition for Salmonella immunity, and that macrophage activation can apparently occur in C3H/HeJ mice in the face of a sustained LPS defect.  相似文献   

15.
Macrophage synthesis of nitrite and nitrate after activation by BCG infection or by treatment in vitro with both T cell-derived (lymphokines (LK) or recombinant murine interferon-gamma (IFN-gamma] and bacterial (lipopolysaccharide (LPS) and heat-killed bacillus Calmette-Guerin (hk BCG] agents was studied by using macrophages from C3H/He and C3H/HeJ mice. Spleen and peritoneal macrophages isolated from BCG-infected donors that were producing nitrate continued to synthesize nitrite and nitrate in culture. LPS treatment in vitro (25 or 50 micrograms/ml) additionally increased this nitrite/nitrate synthesis. Thioglycolate-elicited macrophages from non-infected C3H/HeJ mice treated with LK also produced nitrite/nitrate, and concurrent LPS (0.1 to 50 micrograms/ml) treatment resulted in enhanced synthesis. Recombinant IFN-gamma also stimulated nitrite/nitrate synthesis by C3H/He and CeH/HeJ macrophages as did LPS (C3H/He only) and hk BCG. When given concurrently with either LPS or hk BCG, IFN-gamma enhanced C3H/He and C3H/HeJ macrophage nitrite/nitrate synthesis over that produced by macrophages treated with either LPS or hk BCG alone. Macrophages activated in vitro exhibited a 4 to 12 hr lag time before engaging in nitrite/nitrate synthesis, which then proceeded for 36 to 42 hr at linear rates. Daily medium renewal did not alter the synthesis kinetics but increased the total amount of nitrite/nitrate produced. Nitrate and nitrite were stable under the conditions of culture and when added did not influence additional macrophage synthesis. Taken together, these results indicate that T cell lymphokines and IFN-gamma are powerful modulators of macrophage nitrite/nitrate synthesis during BCG infection and in vitro, and nitrite/nitrate synthesis appears to be common property of both primed and fully activated macrophage populations.  相似文献   

16.
C3H/HeJ mice are hyporesponsive to the biologic effects of bacterial lipopolysaccharide (LPS), and their splenic B cells do not proliferate after exposure to LPS. The molecular basis of this hyporesponsiveness is unknown but it may result from defective membrane signal transduction after LPS binding. To examine this possibility, we added bioactive compounds in combination with LPS to C3H/HeJ B cell cultures in order to bypass the putative defect. The addition of PMA, monensin, or ionomycin, either alone or in combination, had no effect on C3H/HeJ B cell responses to LPS. In contrast, the addition of trypsin together with LPS resulted in a partial restoration of the proliferative response in C3H/HeJ splenic B lymphocytes. The maximal C3H/HeJ B cell response varied from 25 to 60% of the C3Heb/FeJ (LPS responder) B cell response. The trypsin-mediated enhancement of the LPS response was abrogated by pretreatment of the trypsin with the trypsin inhibitors DFP or TLCK. Pretreatment of the LPS with polymyxin B, which blocks lipid A-dependent reactions, also abrogated the trypsin effect. Because the C3H/HeJ B cell responds to all other B cell mitogens, we suggest that the defect is in an LPS-specific step and that the action of trypsin results in the restoration of the missing signal. At the present time the identity of this signal is not known, but the experiments described in this report provide a unique model to elucidate the basis of LPS hyporesponsiveness in splenic B cells from C3H/HeJ mice.  相似文献   

17.
Abstract Endotoxin-associated protein (EP) from Salmonella typhi stimulated the release of prostaglandin E2 (PGE2), interleukin-1 (IL-1), and interferon (IFN) activity in macrophages from the lipopolysaccharide (LPS) responder C3H/OuJ mouse strain. However, only PGE2 and IL-1 were stimulated by EP in macrophages from the LPS nonresponder C3H/HeJ mouse strain. LPS stimulated the release of PGE2, IL-1 and IFN activity in C3H/OuJ macrophages, but not in C3H/HeJ macrophages. The protein kinase C (PKC) activator phorbol myristic acid (PMA) stimulated PGE2 production in both strains but not IL-1 production, suggesting that signalling pathways other than PKC may be involved in IL-1 production. The calcium ionophore ionomycin stimulated PGE2 production in C3H/OuJ but not C3H/HeJ macrophages, suggesting a defective calcium-related pathway in the C3H/HeJ macrophages as compared to the C3H/OuJ cells.  相似文献   

18.
Peritoneal macrophages obtained from lipopolysaccharide (LPS)-low responder C3H/HeJ mice (J) permitted the intracellular growth of the bacterium in macrophages of (J x N) F1 progeny was between the parent strains, showing that the traits were co-dominantly expressed. Correlation between intracellular bacterial growth in macrophages and LPS response of spleen cells was examined. Negative correlation was found between the two factors in F2, (J x F1) backcross and (N x F1) backcross progeny. This result implies that Lps gene controls the innate resistance of murine macrophages against the bacteria. Although macrophages of A/J strain also permit intracellular growth of L. pneumophila, gene complementation analysis of A/J and C3H/HeJ mice made clear that the gene control in C3H/HeJ differs from that of A/J strain. Macrophages of C57BL/10ScN, which is LPS-low responder line obtained from C57BL/10, were also defective in controlling the bacterial growth when compared to C57BL/10 mice. We suggest that the Lps gene also controls the natural resistance of murine macrophages against L. pneumophila.  相似文献   

19.
Macrophages from the lipopolysaccharide (LPS)-responsive C3H/HeN mouse strain and the closely related LPS-nonresponsive C3H/HeJ strain were compared for tumoricidal activation and protein synthetic changes following in vivo and in vitro stimulation, utilizing two-dimensional polyacrylamide gel electrophoresis of [35S]methionine-labeled proteins. Peritoneal macrophages elicited from C3H/HeN mice with heat-killed Propionibacterium acnes exhibited tumoricidal activity in a 16-hr cytolytic assay and expressed cytoplasmic levels of a 23.5-kDa protein during 48 hr of culture. The inability to detect persistent expression of p23.5 in P. acnes-stimulated C3H/HeJ macrophages correlated with the cytolytic impotence of those cells in the 16-hr chromium release assay. C3H/HeN macrophage populations lacking tumoricidal capacity could be rendered lytic, as could P. acnes-elicited C3H/HeJ macrophages, following in vitro stimulation with bacterial lipopolysaccharide. Concomitant with the LPS-induced expression of new functional activity was the appearance of augmented levels of several macrophage-specific proteins, including p23.5. This effect was dependent upon the lipid A moiety of LPS as the effects of LPS could be blocked by inclusion of polymyxin B sulfate in the culture medium. However, neither tumoricidal function nor protein modulation could be readily induced in C3H/HeJ proteose peptone-elicited or resident macrophages. These results identify biochemical responses to stimuli which may be requisite to acquisition or execution of cytolytic activity.  相似文献   

20.
Lipopolysaccharides (LPS) from five species of oral Bacteroides, B. gingivalis strains 381 and ATCC 33277, B. oralis ATCC 33269, B. loescheii ATCC 15930, B. intermedius ATCC 25611 and B. corporis ATCC 33547, were extracted from whole cells by the phenol/water procedure, and subsequently purified by treatment with nuclease and ultracentrifugation. The LPS were composed of hexoses, glucosamine, fatty acids and phosphorus. Heptose and 2-keto-3-deoxyoctonate were not detected. The LPS preparations from B. gingivalis strains 381 and ATCC 33277 presented very similar SDS-polyacrylamide gel electrophoresis patterns when stained with ammoniacal silver. They produced a fused precipitin band against an antiserum to B. gingivalis 381 LPS in immunodiffusion tests. Antisera raised against the LPS from B. loescheii and B. intermedius reacted with the LPS prepared from all the oral Bacteroides strains except those of B. gingivalis. All the LPS preparations were mitogenic for spleen cells of BALB/c (nu/nu) mice, but not for thymus cells from C3H/HeN mice. The LPS induced marked mitogenic responses and polyclonal B cell activation for spleen cells of not only C3H/HeN (LPS responder) mice, but also C3H/HeJ (LPS nonresponder) mice. The mitogenic responses were not suppressed significantly upon addition of polymyxin B to the reaction mixture. These LPS also enhanced interleukin-1 production by murine peritoneal macrophages and mouse cell line J744. 1 macrophages. Hydrolysis of B. gingivalis ATCC 33277 LPS in 1 m-HCl at 100 degrees C for 1 h yielded lipid and polysaccharide. The lipid portion was largely composed of fatty acids and glucosamine, and was mitogenic for spleen cells from C3H/HeJ as well as C3H/HeN mice, while the polysaccharide portion induced no significant mitogenic responses under similar experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号