首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goats in Group A were pretreated for 9 days with a synthetic progestagen, administered via intravaginal sponge, and 1000 i.u. PMSG s.c. on Day 12 of the oestrous cycle. Goats in Group B had the same PMSG treatment, but not the progestagen pretreatment. Group C goats received a s.c. twice daily injection of a porcine FSH preparation (8 mg on Day 12, 4 mg Day 13, 2 mg Day 14 and 1 mg Day 15). Oestrus was synchronized in all animals by 50 micrograms cloprostenol, 2 days after the start of gonadotrophin treatment. The vaginal progestagen sponges were removed from Group A at the same time. Mean ovulation rate was slightly higher in FSH-treated than in the PMSG-treated animals, whereas the incidence of large follicles that failed to ovulate was significantly elevated in PMSG-treated animals in Group B. More goats in Groups A and B than in Group C exhibited premature luteal failure. Progestagen pretreatment appeared to suppress both follicular and luteal activity, as indicated by numbers of large non-ovulating follicles and by the magnitude and duration of elevated plasma oestradiol levels following PMSG stimulation, and by decreased plasma progesterone levels before and after PMSG treatment. Oestrogenic response to FSH was considerably less than that to PMSG, as indicated both by a considerably shorter duration of elevation of circulating oestradiol levels during the peri-ovulatory period, and by lower maximal oestradiol levels. Differences in the ovarian responses to PMSG and FSH may be attributed primarily to differences in the biological half-life of each preparation.  相似文献   

2.
Immature female rats received either one injection of 2 mg diethylstilboestrol (DES)/rat subcutaneously and were killed 12 h later or received two injections of DES at 0 and 24 h and were killed at 24, 36 and 48 h after the initial injection. The ovarian follicles were released by enzymic digestion with collagenase and separated into those of small, medium and large diameter (less than 200 microns, 200-400 microns and greater than 400 microns) by filtration through graded Teflon sieves and granulosa cells were extracted from these follicles. The ovaries of immature rats treated with pregnant mares' serum gonadotrophin (PMSG) were used for comparative purposes. Incorporation of [3H]thymidine into granulosa cell DNA was augmented by DES and by PMSG. Small follicles were more strongly stimulated by DES at 12 h than those of other sizes, but rates increased significantly in medium and large follicles at 48 h. Aromatase activity in the DES-treated group was low at all times and in all follicles. Rates of oestrogen and progesterone production in response to 36 h of exposure to follicle-stimulating hormone (FSH) in vitro were significantly lower than in the PMSG-treated group. FSH-stimulated steroid production in the DES group at 36-48 h was lower, particularly in the medium follicles. A significant rise in serum FSH, luteinizing hormone (LH) and progesterone concentrations was noted only at 36 h after DES treatment, while serum and follicular fluid oestrogen values remained unchanged. When these changes were compared with those in PMSG-treated rats, there were obvious differences. The pattern of thymidine incorporation and aromatase activity differed with time and follicle size. Serum FSH and LH values were not affected by PMSG treatment, but serum and follicular fluid oestradiol values increased with time. The PMSG-treated animals ovulated in response to human chorionic gonadotrophin, but the DES-treated rats did not ovulate in spite of the presence of some large antral follicles in the ovaries. These findings show that initial exposure of follicles to high concentrations of oestrogen results in follicles which fail to respond to subsequent gonadotrophin surges and are thereby restricted in their ability to differentiate fully.  相似文献   

3.
The effect of unilateral ovariectomy on ovulation rates in immature mice was studied. Ovulations were induced by injecting PMSG and hCG and their number was determined by counting tubal oocytes. A 2--3-fold increase in number of ovulations per ovary was observed after unilateral ovariectomy, and daily injections of progesterone abolished this ovulatory compensation. No significant increase in serum concentrations of immunoreactive FSH and LH was observed at 4, 8, 32 and 51 h after unilateral ovariectomy. Progesterone treatment lowered FSH levels at all times, while LH was unaffected. In intact mice, ovarian sensitivity to PMSG and hCG was not substantially affected by progesterone. Ovulatory compensation in immature gonadotrophin-injected mice appears to arise through a negative feedback mechanism and transiently increased secretion of pituitary gonadotrophin rather than through a greater utilization of a fixed amount of gonadotrophin.  相似文献   

4.
Adult rats were pretreated with a 3-day regimen of human menopausal gonadotrophin (hMG), PMSG, human FSH or hCG and experiments were carried out on the day of pro-oestrus. Treatment with hMG and hFSH induced a significant increase in the number of preovulatory follicles on the day of pro-oestrus and this was correlated with increased circulating concentrations of oestradiol. There was a parallel increase in the self-priming effect of GnRH, as observed from the biphasic LH response to a continuous GnRH challenge. PMSG treatment did not stimulate increased numbers of maturing follicles and was less effective in raising circulating oestrogen concentrations compared with hMG and hFSH. However, pituitary responsiveness was much higher after PMSG treatment and the biphasic response to continuous perfusion with GnRH was absent; LH release was high from the initiation of the stimulus. hCG alone failed to stimulate follicular maturation but enhanced pituitary LH responses. Hemi-pituitary glands perfused in the presence of isolated preovulatory follicles also showed augmented biphasic LH responses to GnRH compared with control hemi-pituitary glands. The apparent dissociation which can occur between follicular maturation, circulating oestrogen concentrations and pituitary responsiveness to GnRH supports the idea of non-steroidal ovarian factors modulating LH release.  相似文献   

5.
Stimulation of follicular growth was examined using two different gonadotropin treatments in 10 prepubertal swamp buffalo calves (8 to 12 mo old). Each calf received an ear implant consisting of 3 mg norgestromet and 5 mg estradiol valerate during hormonal treatment. Five calves were additionally administered FSH (24 mg, im) and, 2 mo later, PMSG (3,000 IU). The remaining 5 calves were first treated with PMSG followed by FSH. Ovarian responses to treatments were examined by laparotomy, 72 h after ear implant removal, and by the number of follicles (diameter > or = 0.8 cm) and corpora hemorrhagica present. Ovaries had more significant response to FSH than PMSG treatment (13.9+/-8.6 vs 5.9+/-3.3 follicles; P<0.01). Although the recovery rate tended to be lower for FSH treated (64%) than PMSG-treated (82%) animals, more oocytes/animal were harvested in the PMSG treatment (8.3+/-5.0 vs 4.6+/-3.2, respectively). The immature oocytes (n = 38) were cultured for 24 to 25 h in maturation medium (TCM-199 NaHCO3+10% fetal calf serum [FCS] in 5%CO2 in air at 39 degrees C). Oocyte maturation was assessed after fixation and staining with aceto orcein. The in vitro maturation rate was 52.6% (20/38). This study shows the possibility of harvesting oocytes from prepubertal swamp buffalo calves and maturing the oocyte in vitro.  相似文献   

6.
Protein tyrosine phosphatases are needed for activating maturation promoting factor, meiotic spindle assembly and spindle checkpoint inactivation. The protein phosphatase inhibitor vanadate was used to upset the kinase-phosphatase equilibrium during oocyte maturation (OM) and the metaphase anaphase transition (MAT) prior to cytogenetic analyses of mouse oocytes and bone marrow cells. ICR females received pregnant mare serum gonadotrophin (PMSG) and 48h later received human chorionic gonadotrophin (hCG). Vanadate doses of 0, 5, 15, and 25mg/kg were administered intraperitoneally immediately after hCG and ovulated oocytes and bone marrow cells were processed for cytogenetic analyses 18h after hCG. Data were analyzed by Chi-square and Fisher's exact tests. Vanadate induced different cytogenetic abnormalities in oocytes and in bone marrow cells. The frequencies of oocytes exhibiting premature anaphase (spontaneous activation) in vanadate exposed mice were significantly (P<0.01) elevated over controls; whereas, in bone marrow cells, the levels of tetraploidy, hyperploidy and premature centromere separation were significantly (P<0.01) increased by vanadate treatment. These results suggest that alteration of the kinase-phosphatase equilibrium during OM and the MAT leads to cytogenetic abnormalities that differ between oocytes and bone marrow cells.  相似文献   

7.
The objective of this study was to determine if insulin-transferrin-selenium (ITS) promoted a nuclear and cytoplasmic maturation of porcine oocytes that better supports subsequent embryonic development. The rate of oocyte in vitro maturation (IVM) in an experimental group treated with hormones for 42 h was significantly increased compared with that in a control group without hormone treatment (47.8% vs. 11.7%, respectively, p < 0.05). Following reduction of the hormone treatment period from 42 h to 21 h, which included both the first 21 h period of hormones treatment (45.4%) and the second 21 h period of hormone treatment (44.8%), the rate of oocyte IVM was still higher than that of the control group (p < 0.05). To improve porcine oocyte nuclear maturation, 1% ITS was added to medium supplemented with hormones. The rate of nuclear maturation in the ITS-treated group was significantly higher than in the ITS-untreated group (78.6% vs. 54.4%, respectively, p < 0.05). ITS treatment also significantly reduced the per cent of oocytes with type I and type III cortical granule (CG) distribution, respectively, and significantly increased the per cent of oocytes with type II CG distribution (85.3%). These observations indicated that the synchronization rates of nuclear and ooplasmic maturation reached 67.04% (78.56 × 85.33%). In conclusion, the combination of modified Tissue Culture Medium-199 (mM199) + 10 ng/ml epidermal growth factor (EGF) + 10 IU/ml pregnant mare serum gonadotrophin (PMSG) + 10 IU/ml human chorion gonadotrophin (hCG) + 2.5 IU/ml follicle stimulating hormone (FSH) + 1% ITS is suitable for culturing porcine oocytes in vitro, and effectively enhances porcine oocyte nuclear and cytoplasmic maturation.  相似文献   

8.
Cows and heifers were induced to superovulate by treatment with PMSG or FSH. The ultrastructural features of the oocytes were related to the time of the LH peak and the progesterone/oestradiol-17 beta ratios in the follicular fluid. At 0-2 h after the LH peak the perivitelline space developed; at 9-12 h there was disconnection of the junctions between cumulus cell projections and oolemma, and the concomitant breakdown of the oocyte nucleus; at approximately 15 h there were spatial rearrangements in the ooplasm of (a) mitochondrial clusters from a peripheral to an even distribution and (b) vesicles from an even distribution to a more central location; at approximately 19 h there was abstriction of the first polar body with dislocation of mitochondrial clusters and vesicles towards the site of polar body formation; at 21-22 h there was migration of cortical granules to solitary positions along the oolemma and decrease in the sizes of Golgi complexes and, on some occasions, the smooth endoplasmic reticulum. These ultrastructural changes were accompanied by an increase in progesterone/oestradiol ratios in the follicular fluids. It is concluded that preovulatory oocyte maturation in gonadotrophin-stimulated cattle comprises nuclear as well as cytoplasmic changes accompanied by steroidogenic changes in the follicle, each of which are closely related to the time of the LH peak. However, some variation existed between animals, between follicular and oocyte maturation and even within oocytes between nuclear and cytoplasmic maturation.  相似文献   

9.
Gonadotrophin-induced abnormalities in sheep oocytes after superovulation   总被引:7,自引:0,他引:7  
The development of preovulatory follicles involves an initial phase of somatic cell differentiation and a final phase, initiated by the LH surge, when both the somatic and germinal compartments alter. Abnormalities in this pattern of compartmental development after superovulation have been identified by examining follicles from control, PMSG- and FSH-treated sheep. The pattern of proteins synthesized by oocytes from untreated sheep did not differ after culture of follicles in hormone-free medium from that of germinal vesicle oocytes in vivo. Similarly, 93.5% of oocytes from sheep injected with a pituitary gonadotrophin (FSH-P) synthesized the unchanged germinal vesicle pattern of proteins during culture in an hormonally neutral culture environment. By contrast, the administration of the placental gonadotrophin, PMSG, induced in 28% of oocytes changes in the pattern of synthesis which are normally associated with maturation. An examination of follicular steroidogenesis showed that both total output and particularly oestrogen secretion was over twice as high in follicles from PMSG-treated as compared with FSH-treated animals (P less than 0.01). We conclude that the compartmental pattern of development and steroidogenesis is grossly perturbed in many follicles from PMSG-treated animals. Premature activation of the germinal compartment results in aged or abnormal oocytes and a hostile reproductive tract.  相似文献   

10.
《Theriogenology》1986,26(6):749-755
A study was undertaken to induce estrus among 15 non-cyclic Murrah buffalo heifers at a relatively early age of 2.5 to 3 yr by progesterone releasing intravaginal device (PRID) application. On Day 13, the PRID was removed and the animals were divided into two groups (A and B). Group B received 1000 IU of pregnant mare serum gonadotrophin (PMSG) intramuscularly (i.m.) immediately after removal of the PRID, whereas Group A was given no further treatment. Circulating gonadotrophin profiles (luteinizing hormone (LH) and follicle stimulating hormone (FSH) were quantified during and after the PRID treatment, as well as during the induced estrous cycle. LH and FSH levels before, during, and after PRID treatment were in the range of 0.5 to 3.0 ng/ml and 10 to 45 ng/ml, respectively, and could be considered basal levels. The peak FSH levels of Group B (PRID + PMSG) during estrus ranged from 69.44 to 337.06 ng/ml, much higher than the levels recorded in Group A (PRID). None of the animals in Group A showed peak LH levels during estrus, whereas two animals in Group B had peak LH levels of 15.84 and 16.93 ng/ml at 0 h and 12 h after detection of estrus. The higher LH and FSH levels obtained in Group B animals compared with Group A animals was possibly due to the superimposed effect of PMSG over PRID. All of the 14 animals exhibited estrus. None of the animals in Group A conceived whereas three out of seven animals in Group B conceived, indicating that PMSG following PRID resulted in ovulatory estrus.  相似文献   

11.
A possible role of high oestradiol levels in mediating the adverse effects of hyperstimulation with pregnant mare serum gonadotrophin (PMSG) on early embryonic development in the rat was investigated using an aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA), to inhibit endogenous oestradiol production. Three experiments were conducted in this study. In the first, varying doses of 4-OHA were administered either concurrently with human chorionic gonadotropin (hCG) to pro-oestrus female rats hyperstimulated at early di-oestrus stage with 20 IU PMSG or alone into nonhyperstimulated pro-oestrus females. At high doses of 1000, 2000, or 5000 microg/rat, 4-OHA substantially improved the survival of embryos in hyperstimulated females, while low doses of 100 and 500 microg/rat were ineffective. The protective effect of 4-OHA on embryo count was optimum at 2000 microg. When administered alone, only the highest dose of 5000 microg/rat 4-OHA increased embryo count. In the second experiment, higher doses of PMSG were studied (30 or 40 IU), with or without 5000 microg/rat 4-OHA given at the time of hCG injection. PMSG proved to be more detrimental with increasing dose, and 5000 microg/rat 4-OHA was able to rescue embryos from death in the 30, but not 40, PMSG group. In the third experiment, the influence of the timing of 4-OHA treatment on its ability to improve the embryo count in hyperstimulated females was examined by introducing 4-OHA 24 h earlier, rather than at the time of hCG treatment. The results showed the importance of timing of 4-OHA administration, as 5000 microg/rat 4-OHA was able to restore embryo survival in the 40 PMSG hyperstimulated group only when it was administered 24 h before hCG injection. Together, these results highlighted that 4-OHA, when administered at the appropriate time and dose, could reverse the negative effects of hyperstimulation from PMSG on early embryonic development. This may be due to its potent aromatase inhibiting properties that lead to the suppression of oestrogen production, thereby alleviating the supraphysiological level of oestradiol, which is typically present in PMSG-treated females. Interestingly, 4-OHA treatment on its own was able to positively influence embryo count when given at a high dose of 5000 microg/rat, and this may be associated with its weak androgenic properties. In conclusion, this study supports the hypothesis that excessive oestradiol is responsible for the negative effects of hyperstimulation with PMSG on early embryonic development.  相似文献   

12.
Mouse oocytes can be obtained via superovulation or using in vitro maturation although several factors, including genetic background, may affect response. Our previous studies have identified various mouse species as models to understand the role of sexual selection on the evolution of sperm traits and function. In order to do comparative studies of sperm-oocyte interaction, we sought reliable methods for oocyte superovulation and in vitro maturation in mature females of three mouse species (genus Mus). When 5IU pregnant mare's serum gonadotrophin (PMSG) and 5IU human chorionic gonadotrophin (hCG) were injected 48h apart, and oocytes collected 14h post-hCG, good responses were obtained in Mus musculus (18+/-1.3oocytes/female; mean+/-S.E.M.) and Mus spretus (12+/-0.8), but no ovulation was seen in Mus spicilegus. Changes in PMSG or hCG doses, or longer post-hCG intervals, did not improve results. Use of PMSG/luteinizing hormone (LH) resulted in good responses in M. musculus (19+/-1.2) and M. spretus (12+/-1.1) but not in M. spicilegus (5+/-0.9) with ovulation not increasing with higher LH doses. Follicular puncture 48h after PMSG followed by in vitro maturation led to a high oocyte yield in the three species (M. musculus, 23+/-0.9; M. spretus, 17+/-1.1; M. spicilegus, 10+/-0.9) with a consistently high maturation rates. In vitro fertilization of both superovulated and in vitro matured oocytes resulted in a high proportion of fertilization (range: 83-87%) in the three species. Thus, in vitro maturation led to high yields in all three species. These results will allow future studies on gamete interaction in these closely related species and the role of sexual selection in gamete compatibility.  相似文献   

13.
Twenty-two goats were superovulated with PMSG; 84 h after the onset of estrus the goats were treated with saline solution (control group n = 7), hCG (hCG group, n = 7), or GnRH (GnRH group, n = 8). The ovaries of all the goats were laparoscopically examined 3 and 6 d after the onset of estrus. In each case the CL were counted and classified according to their appearance as normal-looking or as regressing. Blood samples for progesterone determination were collected every 12 h from Day 1 to Day 6. Premature luteal regression was considered to have occurred if progesterone concentrations declined to less than 1 ng/mL by Day 6. According to progesterone concentrations, 57.5, 0 and 37.5% of the goats underwent premature luteal regression in the control, hCG and GnRH groups, respectively. Progesterone concentrations were higher in the hCG group than in the other groups on Days 5 and 6 post estrus (P < 0.05). The control group was the only one in which there was a significant (P < 0.05) increase in the number of regressing CL between Day 3 (1.6 +/- 1.4) and Day 6 (7.3 +/- 1.4). It was also the only group in which there was a significant decrease in the number of normal-looking CL between Day 3 (12.6 +/- 2.1) and Day 6 (2.6 +/- 2.1). On Day 6 the animals treated with hCG had significantly more normal-looking CL (12.0 +/- 2.3) than those in the control group (2.6 +/- 2.1). The number of large follicles present on the ovaries on Day 6 post estrus had negative correlations with progesterone concentrations (P = 0.05) and with the number of normal-looking CL (P < 0.05). It is concluded that the administration of hCG 84 h after the onset of estrus prevents premature luteal regression in goats superovulated with PMSG.  相似文献   

14.
Immature rats, aged 27 days, were stimulated to develop preovulatory follicles by subcutaneous injection of 15 IU of pregnant mare serum gonadotrophin (PMSG). Two days later their oocytes were collected. They were cultured under conditions that permitted continuous observation. Times of the initial stages of maturation were carefully noted, in the absence and the presence of 10 μg/ml of bovine luteinizing hormone (LH). LH did not accelerate germinal vesicle disappearance. It was concluded that the immature PMSG-treated rat was not an appropriate model for the study of LH action; it was speculated that persistence of PMSG mimicked LH in all the oocytes from such donors.  相似文献   

15.
Effects of gonadotropins on the maturation of isolated oocytes and production of progesterone by porcine ovarian follicles from gonadotropin treated gilts have been studied in vitro. The addition of gonadotropins (2 I. U./ml, PMSG, HGC or 2 mg/ml FSH) to the culture medium resulted in increasing the number (84 - 90 %) of isolated oocytes which reached metaphase II. Expansion of the whole cumulus mass was observed only in media containing PMSG, whereas FSH or HCG alone did not cause these marked changes in the cumulus cells. Denudation of the eggs prior to culture gave no significant differences in the maturation rates between oocytes cultured in media with or without gonadotropins. In vitro maturation of follicle-enclosed oocytes took place only in HCG treated animals. Removing the ovary at 15 or 60 minutes after intravenous HCG administration induced oocyte maturation only in 22% and 17% respectively. A sharp increase in the number of oocytes which resume meiosis during follicle culture was observed 4 hours after HCG injection (84 %) and all of the oocytes of the gilts ovariectomized at 8 hours after HCG injection matured during the culture period. The progesterone production of isolated follicles from control gilts (only PMSG injected) increased slowly during a 96-hour culture period (from 48 to 240 ng progesterone/follicle), whereas the secretion of progesterone was drastically increased after a 15 minute interval between HCG injection and ovariectomy (from 42 to 950 ng progesterone/follicle). Follicles removed 24 hours after HCG injection showed a further increase in steroid production (2000 ng progesterone/follicle) and consistently secreted large amounts of progesterone during the culture period.  相似文献   

16.
AIM: To determine whether maturation and subsequent blastocyst development of in vitro matured oocytes can be improved by in vivo follicle stimulating hormone (FSH) or human chorionic gonadotrophin (hCG) priming, using a mouse model. EXPERIMENTAL DESIGN: Five groups of oocytes were used: in vivo control, in vitro matured (IVM) control, IVM after 24 h in vivo priming with FSH, IVM after 48 h in vivo priming with FSH and IVM after 16 h in vivo priming with hCG. In vitro fertilization (IVF) was performed on all groups.Oocyte maturation, fertilization, blastocyst development rates and blastocyst cell numbers were assessed for all groups. RESULTS: Significant improvement in oocyte maturation was observed in the two FSH priming groups compared with the IVM control group (P<0.005 and P<0.001, respectively). There were no significant differences in fertilization between all five groups. Blastocyst development was significantly higher in the in vivo control compared to the IVM groups (P<0.001). No significant differences were observed in blastocyst cell numbers among all five groups. CONCLUSIONS: While FSH priming improves the maturation rate of IVM oocytes, FSH or hCG priming does not improve development to the blastocyst stage.  相似文献   

17.
This study was undertaken to determine the effects of gonadotrophin on cytoskeletal dynamics and embryo development and its role in improving the retrieval of developmentally competent oocytes. Female golden hamsters were injected with human chorionic gonadotrophin (hCG; 5-, 7.5- or 15-IU) on the day 4 of estrus, pregnant mare serum gonadotrophin (PMSG; 5-, 7.5- or 15-IU) on the day 1 of estrus, or 15-IU hCG at 56 hr post-15-IU PMSG injection in any cycle except estrus. Increasing the hCG dose decreased not only retrieval rate of 2-cell embryo but development to blastocyst after subsequent in vitro culture. Whereas, although increasing the PMSG dose induced increasing the number of 2-cell embryo and blastocyst, 15-IU PMSG injection caused retardation of development to blastocyst. No 2-cell embryos were retrieved by injecting both PMSG and hCG. The injections of 15-IU hCG and 7.5- or 15-IU PMSG inhibited the proliferation of trophectodermal and inner cell mass cells, respectively. Gonadotrophin injection didn't influence microtubular spindle formation, but 5- or 15-IU hCG, 15-IU PMSG, or PMSG and hCG injections induced aberrant cortical granule (CG) and microfilament distribution. After 15-IU hCG or PMSG and hCG injections, fewer oocytes had enriched cortical actin domains, and the expression of alpha-, beta- and gamma-actin genes was greatly increased. In conclusion, a high dose of gonadotrophins alters the microfilament and CG distribution, which in turn reduces the developmental competence of oocytes. Injecting a reduced dose of PMSG to initiate ovarian hyperstimulation without triggering ovulation contributes to the efficient retrieval of developmentally competent oocytes.  相似文献   

18.
Ovaries were obtained from naturally cyclic pigs on Days 16-17, 18, 19, 20 and 21 of the oestrous cycle and on the basis of observed follicular characteristics were assigned as representative of the early (Group 1), mid- (Groups 2 and 3) or late (after LH; Group 4) follicular phase. Follicular development in cyclic gilts was compared with that in ovaries obtained from late prepubertal gilts 36 (Group 5) or 72 (Group 6) h after treatment with 750 i.u. PMSG alone, or with a combination of 500 i.u. hCG 72 h after PMSG and slaughter 30-40 h later (Group 7). After dissection of all follicles greater than 2 mm diameter, follicular diameter, follicular fluid volume, follicular fluid concentrations of progesterone, oestradiol and testosterone, and the stage of oocyte maturation were determined. Combined PMSG/hCG treatment of immature gilts resulted in a pattern of follicular development different from that in naturally cyclic gilts during the follicular phase. Overall exogenous gonadotrophin treatment also increased (P less than 0.001) the variability in follicular diameter and fluid volume. Comparisons between appropriate groups also established differences in the variability of both morphological (diameter and volume, Group 1 vs Group 5; P less than 0.05) and biochemical development (follicular fluid oestradiol, Group 3 vs Group 6 and Group 4 vs Group 7; both P less than 0.05). Such differences in both morphological and biochemical characteristics between cyclic and PMSG/hCG-treated gilts were particularly evident in the population of larger (greater than 6 mm) follicles. These results indicate that the pattern of follicular development in naturally cyclic and in PMSG/hCG-treated gilts is dissimilar and suggests that the ovaries of gonadotrophin-treated prepubertal gilts are functionally different from the ovaries of mature females.  相似文献   

19.
Immature rats were treated with PMSG followed 56 h later by 10 i.u. hCG. Follicles were removed at intervals after hCG injection. Transient increases in progesterone, testosterone and oestradiol synthesis were first evident 1 h after hCG, but values peaked at 3-5 h and returned to control levels by 10 h. Increased synthesis of PGE-2 and PGF-2 alpha was not evident until 3 h and peaked at more than 10 h after hCG. Ovulation began between 8 and 10 h after hCG and 83% of animals had ovulated within 12 h. Doses of 90 or 1800 micrograms indomethacin given together with hCG substantially inhibited ovulation and PG synthesis, but only the higher dose inhibited the hCG-induced elevation of progesterone and testosterone synthesis; hCG-induced oestradiol synthesis was not affected by either dose of indomethacin. We conclude that the peak of PG synthesis after hCG treatment related closely to the timing of ovulation; the steroidogenic response to hCG was not blocked by doses of indomethacin sufficient to inhibit synthesis of PGE-2 and PGF-2 alpha by more than 80%.  相似文献   

20.
Adult female mice, regardless of the stage of the oestrous cycle, were superovulated with PMSG and hCG. Ovulated oocytes were recovered 20-22 h after hCG and fertilized ova 72-74 h after hCG. Compared with the controls, the gonadotrophin treatment increased the mating rate of the females, and the incidence of abnormal ova. Regardless of the site of gonadotrophin injections, the numbers of ova were equal, but the proportion of abnormal eggs in mice injected intraperitoneally was significantly higher than in mice injected subcutaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号