首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that the NAD(P)H oxidase-dependent generation of superoxide anion (O2-*) mediates tumor necrosis factor-alpha (TNF)-induced alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin. The NAD(P)H oxidase subcomponents p47phox and p22phox were assessed by immunofluorescent microscopy and Western blot. The reactive oxygen species O2-* was measured by the fluorescence of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetatedi(acetoxymethyl ester), 5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-acetyl ester, and dihydroethidium. TNF treatment (50 ng/ml for 4.0 h) induced 1) p47phox translocation, 2) an increase in p22phox protein, 3) increased localization of p47phox with p22phox, 4) O2-* generation, and 5) increased permeability to albumin. p22phox antisense oligonucleotide prevented the TNF-induced effect on p22phox, p47phox, O2-*, and permeability. The scrambled nonsense oligonucleotide had no effect. The TNF-induced increase in O2-* and permeability to albumin was also prevented by the O2-* scavenger Cu-Zn superoxide dismutase (100 U/ml). The results indicate that the activation of NAD(P)H oxidase, via the generation of O2-*, mediates TNF-induced barrier dysfunction in PMEM.  相似文献   

2.
Cross talk between the actin cytoskeleton and the microtubule (MT) network plays a critical role in regulation of endothelial permeability. We have previously demonstrated that MT disruption by nocodazole results in increases in MLC phosphorylation, actomyosin contraction, cell retraction, and paracellular gap formation, cardinal features of endothelial barrier dysfunction (Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, and Garcia JG. Am J Physiol Lung Cell Mol Physiol 281: L565-L574, 2001; Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva A, Garcia JG, and Verin AD. J Cell Physiol. In press.). Although activation of PKA opposes barrier-disrupting effects of edemagenic agents on confluent EC monolayers, information about the molecular mechanisms of PKA-mediated EC barrier protection is limited. Our results suggest that MT disassembly alters neither intracellular cAMP levels nor PKA enzymatic activity; however, elevation of cAMP levels and PKA activation by either cholera toxin or forskolin dramatically attenuates the decline in transendothelial electrical resistance induced by nocodazole in human pulmonary EC. Barrier-protective effects of PKA on EC were associated with PKA-mediated inhibition of nocodazole-induced stress fiber formation, Rho activation, phosphorylation of myosin phosphatase regulatory subunit at Thr696, and decreased MLC phosphorylation. In addition, forskolin pretreatment attenuated MT disassembly induced by nocodazole. These results suggest a critical role for PKA activity in stabilization of MT cytoskeleton and provide a novel mechanism for cAMP-mediated regulation of Rho-induced actin cytoskeletal remodeling, actomyosin contraction, and EC barrier dysfunction induced by MT disassembly.  相似文献   

3.
ROCK mediates thrombin's endothelial barrier dysfunction   总被引:6,自引:0,他引:6  
Thrombin-induced endothelial monolayer hyperpermeability is thought toresult from increased F-actin stress fiber-related contractile tension,a process regulated by the small GTP-binding protein Rho. We testedwhether this process was dependent on the Rho-associated proteinkinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects ofY-27632 on thrombin-induced myosin light chain phosphorylation (MLCP)and tyrosine phosphorylation of p125 focal adhesion kinase(p125FAK) and paxillin were measured by Western blotting.F-actin organization and content were analyzed by digital imaging, andendothelial monolayer permeability was measured in bovine pulmonaryartery endothelial cell (EC) monolayers using a size-selectivepermeability assay. Y-27632 enhanced EC monolayer barrier function dueto a decline in small-pore number that was associated with increased ECsurface area, reduced F-actin content, and reorganization of F-actin to-catenin-containing cell-cell adherens junctions. Although Y-27632prevented thrombin-induced MLCP, stress fiber formation, and theincreased phosphotyrosine content of paxillin and p125FAK,it attenuated but did not prevent the thrombin-induced formation oflarge paracellular holes. These data indicate that thrombin-induced stress fiber formation is ROCK dependent. In contrast, thrombin-induced paracellular hole formation occurs in a ROCK-independent manner, whereas thrombin-induced monolayer hyperpermeability appears to bepartially ROCK dependent.

  相似文献   

4.
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy.  相似文献   

5.
The Rho-GDP guanine nucleotide dissociation inhibitor (GDI) complexes with the GDP-bound form of Rho and inhibits its activation. We investigated the role of protein kinase C (PKC) isozymes in the mechanism of Rho activation and in signaling the loss of endothelial barrier function. Thrombin and phorbol 12-myristate 13-acetate induced rapid phosphorylation of GDI and the activation of Rho-A in human umbilical venular endothelial cells. Inhibition of PKC by chelerythrine chloride abrogated the thrombin-induced GDI phosphorylation and Rho activation. Depletion of PKC prevented the thrombin-induced GDI phosphorylation and Rho activation, thereby indicating that these events occurred downstream of phorbol ester-sensitive PKC isozyme activation. The depletion of PKC or inhibition of Rho by C3 toxin also prevented the thrombin-induced decrease in transendothelial electrical resistance (a measure of increased transendothelial permeability), thus indicating that PKC-induced barrier dysfunction was mediated through Rho-dependent pathway. Using inhibitors and dominant-negative mutants, we found that Rho activation was regulated by PKC-alpha. Moreover, the stimulation of human umbilical venular endothelial cells with thrombin induced rapid association of PKC-alpha with Rho. Activated PKC-alpha but not PKC-epsilon induced marked phosphorylation of GDI in vitro. Taken together, these results indicate that PKC-alpha is critical in regulating GDI phosphorylation, Rho activation, and in signaling Rho-dependent endothelial barrier dysfunction.  相似文献   

6.
We tested the hypothesis that tumor necrosis factor (TNF)-alpha induces a peroxynitrite (ONOO(-))-dependent increase in permeability of pulmonary microvessel endothelial monolayers (PMEM) that is associated with generation of nitrated beta-actin (NO(2)-beta-actin). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin. beta-Actin was extracted from PMEM lysate with a DNase-Sepharose column. The extracted beta-actin was quantified in terms of its nitrotyrosine/beta-actin ratio with anti-nitrotyrosine and anti-beta-actin antibodies, sequentially, by dot-blot assays. The cellular compartmentalization of NO(2)-beta-actin was displayed by showing confocal localization of nitrotyrosine-immunofluorescence with beta-actin-immunofluorescence but not with F-actin fluorescence. Incubation of PMEM with TNF (100 ng/ml) for 0.5 and 4.0 h resulted in increases in permeability to albumin. There was an increase in the nitrotyrosine/beta-actin ratio at 0.5 h with minimal association of the NO(2)-beta-actin with F-actin polymers. The TNF-induced increase in the nitrotyrosine/beta-actin ratio and permeability were prevented by the anti-ONOO(-) agent Urate. The data indicate that TNF induces an ONOO(-)-dependent barrier dysfunction, which is associated with the generation of NO(2)-beta-actin.  相似文献   

7.
8.

Background

Endothelial barrier dysfunction (EBD) involves microtubule disassembly and enhanced cell contractility. Histone deacetylase 6 (HDAC6) deacetylates α-tubulin, and thereby destabilizes microtubules. This study investigates a role for HDAC6 in EBD.

Methods

EBD was induced with thrombin ± HDAC6 inhibitors (tubacin and MC1575), and assessed by transendothelial electrical resistance (TEER). Markers for microtubule disassembly (α-tubulin and acetylated α-tubulin) and contraction (phosphorylated myosin light chain 2, P-MLC2) were measured using immunoblots and immunofluorescence.

Results and conclusion

Thrombin induced a ∼50% decrease in TEER that was abrogated by the HDAC6 inhibitors. Moreover, inhibition of HDAC6 diminished edema in the lung injured by lipopolysaccharide. Lastly, inhibition of HDAC6 attenuated thrombin-induced microtubule disassembly and P-MLC2. Our results suggest that HDAC6 can be targeted to limit EBD.  相似文献   

9.
10.
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78±6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86±18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1.  相似文献   

11.
The adherens junction is a multiprotein complex consisting of the transmembrane vascular endothelial cadherin (VEC) and cytoplasmic catenins (p120, beta-catenin, plakoglobin, alpha-catenin) responsible for the maintenance of endothelial barrier function. Junctional disassembly and modifications in cadherin/catenin complex lead to increased paracellular permeability of the endothelial barrier. However, the mechanisms of junctional disassembly remain unclear. In this study, we used the proinflammatory mediator thrombin to compromise the barrier function and test the hypothesis that phosphorylation-induced alterations of VEC, beta-catenin, and p120 regulate junction disassembly and mediate the increased endothelial permeability response. The study showed that thrombin induced dephosphorylation of VEC, which is coupled to disassembly of cell-cell contacts, but VEC remained in aggregates at the plasma membrane. The cytoplasmic catenins dissociated from the VEC cytoplasmic domain in thin membrane projections formed in interendothelial gaps. We also showed that thrombin induced dephosphorylation of beta-catenin and phosphorylation of p120. Thrombin-induced interendothelial gap formation and increased endothelial permeability were blocked by protein kinase C inhibition using chelerythrine and G?-6976 but not by LY-379196. Chelerythrine also prevented thrombin-induced phosphorylation changes of the cadherin/catenin complex. Thus the present study links posttranslational modifications of VEC, beta-catenin, and p120 to the mechanism of thrombin-induced increase in endothelial permeability.  相似文献   

12.
Serine/threonine (Ser/Thr) protein phosphatases (PPs) are implicated in the recovery from endothelial barrier dysfunction caused by inflammatory mediators. We hypothesized that Ser/Thr PPs may regulate protein kinase C (PKC), a critical signaling molecule in barrier dysfunction, in the promotion of barrier recovery. Western analysis indicated that bovine pulmonary microvascular endothelial cells (BPMECs) expressed the three major Ser/Thr PPs, PP1, PP2A, and PP2B. Pretreatment with 100 ng/ml of FK506 (a PP2B inhibitor) but not with the PP1 and PP2A inhibitors calyculin A or okadaic acid potentiated the thrombin-induced increase in PKC phosphotransferase activity. FK506 also potentiated thrombin-induced PKC-alpha but not PKC-beta phosphorylation. FK506 but not calyculin A or okadaic acid inhibited recovery from the thrombin-induced decrease in transendothelial resistance. Neither FK506 nor okadaic acid altered the thrombin-induced resistance decrease, whereas calyculin A potentiated the decrease. Downregulation of PKC with phorbol 12-myristate 13-acetate rescued the FK506-mediated inhibition of recovery, which was consistent with the finding that the thrombin-induced phosphorylation of PKC-alpha was reduced during the recovery phase. These results indicated that PP2B may play a physiologically important role in returning endothelial barrier dysfunction to normal through the regulation of PKC.  相似文献   

13.
14.
Tumor necrosis factor (TNF)-alpha is released in acute inflammatory lung syndromes linked to the extensive vascular dysfunction associated with increased permeability and endothelial cell apoptosis. TNF-alpha induced significant decreases in transcellular electrical resistance across pulmonary endothelial cell monolayers, reflecting vascular barrier dysfunction (beginning at 4 h and persisting for 48 h). TNF-alpha also triggered endothelial cell apoptosis beginning at 4 h, which was attenuated by the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Exploring the involvement of the actomyosin cytoskeleton in these important endothelial cell responses, we determined that TNF-alpha significantly increased myosin light chain (MLC) phosphorylation, with prominent stress fiber and paracellular gap formation, which paralleled the onset of decreases in transcellular electrical resistance and enhanced apoptosis. Reductions in MLC phosphorylation by the inhibition of either MLC kinase (ML-7, cholera toxin) or Rho kinase (Y-27632) dramatically attenuated TNF-alpha-induced stress fiber formation, indexes of apoptosis, and caspase-8 activity but not TNF-alpha-induced barrier dysfunction. These studies indicate a central role for the endothelial cell cytoskeleton in TNF-alpha-mediated apoptosis, whereas TNF-alpha-induced vascular permeability appears to evolve independently of contractile tension generation.  相似文献   

15.
Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma.  相似文献   

16.
Elevated levels of low-density lipoproteins (LDL) and lipoprotein(a) [Lp(a)] have been considered strong risk factors for atherosclerotic cardiovascular disease. Increased production of plasminogen activator inhibitor-1 (PAI-1) has been implicated in the development of thrombosis and atherosclerosis. Previous studies by our group and others demonstrated that oxidation enhances LDL- and Lp(a)-induced production of PAI-1 in human umbilical vein endothelial cells (HUVEC). The present study examined the involvement of protein kinase C (PKC) and its isoform in vascular endothelial cells (EC) induced by native or oxidized LDL and Lp(a). Treatment with Lp(a) or LDL transiently increased PKC activity at 15 min and 5.5 h after the start of lipoprotein treatment in EC. Copper-oxidized LDL and Lp(a) induced greater PKC activation in EC compared with comparable forms of those lipoproteins. Additions of 1 microM calphostin C, a PKC-specific inhibitor, at the beginning or > or =5 h, but not > or = 9 h, after the initiation of lipoprotein treatment, blocked native and oxidized LDL- or Lp(a)-induced increases in PKC activity and PAI-1 production. Treatment of LDL, Lp(a), or their oxidized forms was induced in translocation of PKC-beta1 from cytosol to membrane in HUVEC. Treatments with 60 nM 379196, a PKC-beta-specific inhibitor, effectively prevented PAI-1 production induced by LDL, Lp(a), or their oxidized forms in HUVEC and human coronary artery EC. The results suggest that activation of PKC-beta may mediate the production of PAI-1 in cultured arterial and venous EC induced by LDL, Lp(a), or their oxidized forms.  相似文献   

17.
The Ramos-Burkitt lymphoma (BL) B cell line is driven into growth arrest and apoptosis by cross-linking surface immunoglobulin. We demonstrate that protein kinase C (PKC) activity is required for Ramos B cell proliferation and survival. A variety of PKC inhibitors trigger a significant decrease in [(3)H]thymidine incorporation with a concomitant increase in cell death. Antisense depletion of expression of the PKC-alpha isoform is sufficient to trigger cell death in the absence of any other signal, demonstrating a requirement for this isoform for survival of Ramos-BL B cells. Cross-linking surface immunoglobulin also leads to depletion of PKC-alpha levels, suggesting that this may be one mechanism by which this signals for cell death in Ramos-BL B cells.  相似文献   

18.
While a great deal of attention has been focused on G-protein-coupled receptor (GPCR)-induced epidermal growth factor receptor (EGFR) transactivation, it has been known for many years that the tyrosine kinase activity of the EGFR is inhibited in cells treated with tumor-promoting phorbol esters, a process termed EGFR transmodulation. Because many GPCR agonists that elicit EGFR transactivation also stimulate the Gq/phospholipase C (PLC)/protein kinase C (PKC) pathway, we hypothesized that PKC-mediated inhibition of EGFR transactivation operates physiologically as a feedback loop that regulates the intensity and/or duration of GPCR-elicited EGFR transactivation. In support of this hypothesis, we found that treatment of intestinal epithelial IEC-18 cells with the PKC inhibitors GF 109203X or Ro 31-8220 or chronic exposure of these cells to phorbol-12,13-dibutyrate (PDB) to downregulate PKCs, markedly enhanced the increase in EGFR tyrosine phosphorylation induced by angiotensin II or vasopressin in these cells. Similarly, PKC inhibition enhanced EGFR transactivation in human colonic epithelial T84 cells stimulated with carbachol, as well as in bombesin-stimulated Rat-1 fibroblasts stably transfected with the bombesin receptor. Furthermore, cell treatment with inhibitors with greater specificity towards PKCα,  including Gö6976, Ro 31-7549 or Ro 32-0432, also increased GPCR-induced EGFR transactivation in IEC-18, T84 and Rat-1 cells. Transfection of siRNAs targeting PKCα  also enhanced bombesin-induced EGFR tyrosine phosphorylation in Rat-1 cells. Thus, multiple lines of evidence support the hypothesis that conventional PKC isoforms, especially PKCα, mediate feedback inhibition of GPCR-induced EGFR transactivation.  相似文献   

19.
Vitamin C, or ascorbic acid, decreases paracellular endothelial permeability in a process that requires rearrangement of the actin cytoskeleton. To define the proximal mechanism of this effect, we tested whether it might involve enhanced generation and/or sparing of nitric oxide (NO) by the vitamin. EA.hy926 endothelial cells cultured on semi-porous filter supports showed decreased endothelial barrier permeability to radiolabeled inulin in response to exogenous NO provided by the NO donor spermine NONOATE, as well as to activation of the downstream NO pathway by 8-bromo-cyclic GMP, a cell-penetrant cyclic GMP analog. Inhibition of endothelial nitric oxide synthase (eNOS) with Nω-nitro-l-arginine methyl ester increased endothelial permeability, indicating a role constitutive NO generation by eNOS in maintaining the permeability barrier. Inhibition of guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one also increased endothelial permeability and blocked barrier tightening by spermine NONOATE. Loading cells with what are likely physiologic concentrations of ascorbate decreased endothelial permeability. This effect was blocked by inhibition of either eNOS or guanylate cyclase, suggesting that it involved generation of NO by eNOS and subsequent NO-dependent activation of guanylate cyclase. These results show that endothelial permeability barrier function depends on constitutive generation of NO and that ascorbate-dependent tightening of this barrier involves maintaining NO through the eNOS/guanylate cyclase pathway.  相似文献   

20.
Li HB  Ge YK  Zhang L  Zheng XX 《Life sciences》2006,79(12):1186-1193
The purpose of the present study was to examine the effects of astragaloside IV, a saponin isolated from Astragalus membranaceus (Fisch) Bge, on the impairment of barrier function induced by acute high glucose in cultured human vein endothelial cells. High glucose (27.8 mM) induced a decrease in transendothelial electrical impedance and an increase in cell monolayer permeability in human umbilical vein endothelial cells. Endothelial barrier dysfunction stimulated by high glucose was accompanied by translocation and activation of protein kinase C (PKC), the redistribution of F-actin and formation of intercellular gaps, suggesting that increases in PKC activity and rearrangement of F-actin could be associated with endothelial barrier dysfunction induced by acute high glucose. Application of astragaloside IV inhibited high glucose-induced endothelial barrier dysfunction in a dose-dependent manner, which is compatible with inhibition of PKC translocation and improvement of F-actin rearrangements. Western blot analysis revealed that high glucose-induced PKC alpha and beta2 overexpression in the membrane fraction were significantly reduced by astragaloside IV. These findings indicate that astragaloside IV protected endothelial cells from high glucose-induced barrier impairment by inhibiting PKC activation, as well as improving cytoskeleton remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号