首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The refolding of barstar from its urea-unfolded state has been studied extensively using various spectroscopic probes and real-time NMR, which provide global and residue-specific information, respectively, about the folding process. Here, a preliminary structural characterization by NMR of barstar in 8 M urea has been carried out at pH 6.5 and 25 degrees C. Complete backbone resonance assignments of the urea-unfolded protein were obtained using the recently developed three-dimensional NMR techniques of HNN and HN(C)N. The conformational propensities of the polypeptide backbone in the presence of 8 M urea have been estimated by examining deviations of secondary chemical shifts from random coil values. For some residues that belong to helices in native barstar, 13C(alpha) and 13CO secondary shifts show positive deviations in the urea-unfolded state, indicating that these residues have propensities toward helical conformations. These residues are, however, juxtaposed by residues that display negative deviations indicative of propensities toward extended conformations. Thus, segments that are helical in native barstar are unlikely to preferentially populate the helical conformation in the unfolded state. Similarly, residues belonging to beta-strands 1 and 2 of native barstar do not appear to show any conformational preferences in the unfolded state. On the other hand, residues belonging to the beta-strand 3 segment show weak nonnative helical conformational preferences in the unfolded state, indicating that this segment may possess a weak preference for populating a helical conformation in the unfolded state.  相似文献   

2.
The changes in the free energy of the denatured state of a set of yeast iso-1-cytochrome c variants with single surface histidine residues have been measured in 3 M guanidine hydrochloride. The thermodynamics of unfolding by guanidine hydrochloride is also reported. All variants have decreased stability relative to the wild-type protein. The free energy of the denatured state was determined in 3 M guanidine hydrochloride by evaluating the strength of heme-histidine ligation through determination of the pK(a) for loss of histidine binding to the heme. The data are corrected for the presence of the N-terminal amino group which also ligates to the heme under similar solution conditions. Significant deviations from random coil behavior are observed. Relative to a variant with a single histidine at position 26, residual structure of the order of -1.0 to -2.5 kcal/mol is seen for the other variants studied. The data explain the slower folding of yeast iso-1-cytochrome c relative to the horse protein. The greater number of histidines and the greater strength of ligation are expected to slow conversion of the histidine-misligated forms to the obligatory aquo-heme intermediate during the ligand exchange phase of folding. The particularly strong association of histidine residues at positions 54 and 89 may indicate regions of the protein with strong energetic propensities to collapse against the heme during early folding events, consistent with available data in the literature on early folding events for cytochrome c.  相似文献   

3.
The thermodynamic stability of a protein provides an experimental metric for the relationship of protein sequence and native structure. We have investigated an approach based on an analysis of the structural database for stability engineering of an immunoglobulin variable domain. The most frequently occurring residues in specific positions of beta-turn motifs were predicted to increase the folding stability of mutants that were constructed by site-directed mutagenesis. Even in positions in which different residues are conserved in immunoglobulin sequences, the predictions were confirmed. Frequently, mutants with increased beta-turn propensities display increased folding cooperativities, suggesting pronounced effects on the unfolded state independent of the expected effect on conformational entropy. We conclude that structural motifs with predominantly local interactions can serve as templates with which patterns of sequence preferences can be extracted from the database of protein structures. Such preferences can predict the stability effects of mutations for protein engineering and design.  相似文献   

4.
Henipaviruses are recently emerged severe human pathogens within the Paramyxoviridae family. Their genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). We have previously shown that in Henipaviruses the N protein possesses an intrinsically disordered C-terminal domain, N(TAIL), which undergoes α-helical induced folding in the presence of the C-terminal domain (P(XD)) of the P protein. Using computational approaches, we previously identified within N(TAIL) four putative molecular recognition elements (MoREs) with different structural propensities, and proposed a structural model for the N(TAIL)-P(XD) complex where the MoRE encompassing residues 473-493 adopt an α-helical conformation at the P(XD) surface. In this work, for each N(TAIL) protein, we designed four deletion constructs bearing different combinations of the predicted MoREs. Following purification of the N(TAIL) truncated proteins from the soluble fraction of E. coli, we characterized them in terms of their conformational, spectroscopic and binding properties. These studies provided direct experimental evidence for the structural state of the four predicted MoREs, and showed that two of them have clear α-helical propensities, with the one spanning residues 473-493 being strictly required for binding to P(XD). We also showed that Henipavirus N(TAIL) and P(XD) form heterologous complexes, indicating that the P(XD) binding regions are functionally interchangeable between the two viruses. By combining spectroscopic and conformational analyses, we showed that the content in regular secondary structure is not a major determinant of protein compaction.  相似文献   

5.
Structural and motional features in the denatured state of a protein dictate the early folding events starting from that state and these features vary depending upon the nature of the denaturant used. Here, we have attempted to decipher the early events in the folding of Dynein Light Chain protein (DLC8), starting from DMSO-d6 denatured state. Multinuclear NMR experiments were used to obtain the full spectral assignment. The HSQC spectrum shows the presence of two sets of peaks for the residues Met 1, Ser 2, Arg 4, Ala 11, Met 17, Thr 26, Lys 44, Tyr 50, Asn 51, Trp 54, His 55, Val 58, Gly 59, Ser 64, Tyr 65, His 68, Phe 86, Lys 87 indicating the presence of slow conformational transition in the heterogeneous ensemble. Analysis of residual structural propensities with secondary 13C chemical shifts, 3J(HNHα) coupling constants and 1H-1H NOE revealed the presence of local preferences which encompass both native and non-native like structures. The spectral density calculations, as obtained from measured R1, R2 and 1H-15N steady state NOE values provide insights into the backbone dynamics on the milli to picosecond timescale. The segment Ser 14 - His 55 exhibits slow motions on the milli- to microsecond timescale arising from conformational exchange. The presence of native like structural preference, as well as conformational exchange classifies the above segment as the nucleation site of folding. Based on the observations, we propose here, the probable hierarchy of folding of DLC8 on dilution of denaturant: the two helices are formed first followed by the formation of β2 and β5.  相似文献   

6.
The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  相似文献   

7.
Structural database-derived propensities for amino acids to adopt particular local protein structures, such as alpha-helix and beta-strand, have long been recognized and effectively exploited for the prediction of protein secondary structure. However, the experimental verification of database-derived propensities using mutagenesis studies has been problematic, especially for beta-strand propensities, because local structural preferences are often confounded by non-local interactions arising from formation of the native tertiary structure. Thus, the overall thermodynamic stability of a protein is not always altered in a predictable manner by changes in local structural propensity at a single position. In this study, we have undertaken an investigation of the relationship between beta-strand propensity and protein folding kinetics. By characterizing the effects of a wide variety of amino acid substitutions at two different beta-strand positions in an SH3 domain, we have found that the observed changes in protein folding rates are very well correlated to beta-strand propensities for almost all of the substitutions examined. In contrast, there is little correlation between propensities and unfolding rates. These data indicate that beta-strand conformation is well formed in the structured portion of the SH3 domain transition state, and that local structure propensity strongly influences the stability of the transition state. Since the transition state is known to be packed more loosely than the native state and likely lacks many of the non-local stabilizing interactions seen in the native state, we suggest that folding kinetics studies may generally provide an effective means for the experimental validation of database-derived local structural propensities.  相似文献   

8.
Understanding protein folding requires complete characterization of all the states of the protein present along the folding pathways. For this purpose nuclear magnetic resonance (NMR) has proved to be a very powerful technique because of the great detail it can unravel regarding the structure and dynamics of protein molecules. We report here NMR identification of local structural preferences in human immunodeficiency virus-1 protease in the 'unfolded state'. Analyses of the chemical shifts revealed the presence of local structural preferences many of which are native-like, and there are also some non-native structural elements. Three-bond H(N)-H(alpha) coupling constants that could be measured for some of the N-terminal and C-terminal residues are consistent with the native-like beta-structure. Unusually shifted 15N and amide proton chemical shifts of residues adjacent to some prolines and tryptophans also indicate the presence of some structural elements. These conclusions are supported by amide proton temperature coefficients and nuclear Overhauser enhancement data. The locations of the residues exhibiting preferred structural propensities on the crystal structure of the protein, give useful insights into the folding mechanism of this protein.  相似文献   

9.
10.
Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.  相似文献   

11.
Definition of the transition mechanism from the native globular protein into fibrillar polymer was greatly improved by the biochemical and biophysical studies carried out on the two amyloidogenic variants of human lysozyme, I56T and D67H. Here we report thermodynamic and kinetic data on folding as well as structural features of a naturally occurring variant of human lysozyme, T70N, which is present in the British population at an allele frequency of 5% and, according to clinical and histopathological data, is not amyloidogenic. This variant is less stable than the wild-type protein by 3.7 kcal/mol, but more stable than the pathological, amyloidogenic variants. Unfolding kinetics in guanidine are six times faster than in the wild-type, but three and twenty times slower than in the amyloidogenic variants. Enzyme catalytic parameters, such as maximal velocity and affinity, are reduced in comparison to the wild-type. The solution structure, determined by 1H NMR and modeling calculations, exhibits a more compact arrangement at the interface between the beta-sheet domain and the subsequent loop on one side and part of the alpha domain on the other side, compared with the wild-type protein. This is the opposite of the conformational variation shown by the amyloidogenic variant D67H, but it accounts for the reduced stability and catalytic performance of T70N.  相似文献   

12.
The equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model. Unfolding of Cro monomer is well described by the standard two state model. The stability of both forms of protein increases in the presence of salt but decreases with the decrease in pH. Because of the suggested importance of a N2<-->2F dimerization process in DNA binding, we have also studied the effect of sodium perchlorate, containing the chaotropic perchlorate anion, on the conformational transition of Cro dimer by CD, fluorescence and NMR (in addition to urea and guanidine hydrochloride) in an attempt both to characterize the thermodynamics of the process and to identify conditions that lead to an increase in the population of the folded monomers. Data suggest that sodium perchlorate stabilizes the protein at low concentration (<1.5 M) and destabilizes the protein at higher perchlorate concentration with the formation of a "significantly folded" monomer. The tryptophan residue in the "significantly folded" monomer induced by perchlorate is more exposed to the solvent than in native dimer.  相似文献   

13.
Jha AK  Colubri A  Zaman MH  Koide S  Sosnick TR  Freed KF 《Biochemistry》2005,44(28):9691-9702
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent with the polyproline II conformation rather than alpha or beta conformations. The preference for the polyproline II conformation is independent of the degree of solvation. In conjunction with a new masking procedure, the frequencies in our coil library accurately recapitulate both helix and sheet frequencies for the amino acids in structured regions, as well as polyproline II propensities. Therefore, structural propensities for alpha-helices and beta-sheets and for polyproline II conformations in unfolded peptides can be rationalized solely by local effects. In addition, these propensities are often strongly affected by both the chemical nature and the conformation of neighboring residues, contrary to the Flory isolated residue hypothesis.  相似文献   

14.
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.  相似文献   

15.
Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available.  相似文献   

16.
The folding/unfolding equilibrium of the alpha-spectrin SH3 domain has been measured by NMR-detected hydrogen/deuterium exchange and by differential scanning calorimetry. Protection factors against exchange have been obtained under native conditions for more than half of the residues in the domain. Most protected residues are located at the beta-strands, the short 3(10) helix, and part of the long RT loop, whereas the loops connecting secondary structure elements show no measurable protection. Apparent stability constants per residue and their corresponding Gibbs energies have been calculated from the exchange experiments. The most stable region of the SH3 domain is defined by the central portions of the beta-strands. The peptide binding region, on the other hand, is composed of a highly stable region (residues 53-57) and a highly unstable region, the loop between residues 34-41 (n-Src loop). All residues in the domain have apparent Gibbs energies lower than the global unfolding Gibbs energy measured by differential scanning calorimetry, indicating that under our experimental conditions the amide exchange of all residues in the SH3 domain occurs primarily via local unfolding reactions. A structure-based thermodynamic analysis has allowed us to predict correctly the thermodynamics of the global unfolding of the domain and to define the ensemble of conformational states that quantitatively accounts for the observed pattern of hydrogen exchange protection. These results demonstrate that under native conditions the SH3 domain needs to be considered as an ensemble of conformations and that the hydrogen exchange data obtained under those conditions cannot be interpreted by a two-state equilibrium. The observation that specific regions of a protein are able to undergo independent local folding/unfolding reactions indicates that under native conditions the scale of cooperative interactions is regional rather than global.  相似文献   

17.
Folding regulates autoprocessing of HIV-1 protease precursor   总被引:1,自引:0,他引:1  
Autoprocessing of HIV-1 protease (PR) precursors is a crucial step in the generation of the mature protease. Very little is known regarding the molecular mechanism and regulation of this important process in the viral life cycle. In this context we report here the first and complete residue level investigations on the structural and folding characteristics of the 17-kDa precursor TFR-PR-C(nn) (161 residues) of HIV-1 protease. The precursor shows autoprocessing activity indicating that the solution has a certain population of the folded active dimer. Removal of the 5-residue extension, C(nn) at the C-terminal of PR enhanced the activity to some extent. However, NMR structural characterization of the precursor containing a mutation, D25N in the PR at pH 5.2 and 32 degrees C under different conditions of partial and complete denaturation by urea, indicate that the precursor has a high tendency to be unfolded. The major population in the ensemble displays some weak folding propensities in both the TFR and the PR regions, and many of these in the PR region are the non-native type. As both D25N mutant and wild-type PR are known to fold efficiently to the same native dimeric form, we infer that TFR cleavage enables removal of the non-native type of preferences in the PR domain to cause constructive folding of the protein. These results indicate that intrinsic structural and folding preferences in the precursor would have important regulatory roles in the autoprocessing reaction and generation of the mature enzyme.  相似文献   

18.
Thermodynamic stability parameters and the equilibrium unfolding mechanism of His 6HodC69S, a mutant of 1 H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) having a Cys to Ser exchange at position 69 and an N-terminal hexahistidine tag (His 6HodC69S), have been derived from isothermal unfolding studies using guanidine hydrochloride (GdnHCl) or urea as denaturants. The conformational changes were monitored by following changes in circular dichroism (CD), fluorescence, and dynamic light scattering (DLS), and the resulting transition curves were analyzed on the basis of a sequential three-state model N = I = D. The structural changes have been correlated to catalytic activity, and the contribution to stability of the disulfide bond between residues C37 and C184 in the native protein has been established. A prominent result of the present study is the finding that, independent of the method used for denaturing the protein, the unfolding mechanism always comprises three states which can be characterized by, within error limits, identical sets of thermodynamic parameters. Apparent deviations from three-state unfolding can be rationalized by the inability of a spectroscopic probe to discriminate clearly between native, intermediate, and unfolded ensembles. This was the case for the CD-monitored urea unfolding curve.  相似文献   

19.
The structure and dynamics of equilibrium intermediate in the unfolding pathway of the human acidic fibroblast growth factor (hFGF-1) are investigated using a variety of biophysical techniques including multidimensional NMR spectroscopy. Guanidinium hydrochloride (GdnHCl)-induced unfolding of hFGF-1 proceeds with the accumulation of a stable intermediate state. The transition from the intermediate state to the unfolded state(s) is cooperative without the accumulation of additional intermediate(s). The intermediate state induced maximally in 0.96 m GdnHCl is found to be obligatory in the folding/unfolding pathway of hFGF-1. Most of the native tertiary structure interactions are preserved in the intermediate state. (1)H-(15)N chemical shift perturbation data suggest that the residues in the C-terminal segment including those located in the beta-strands IX, X, and XI undergo the most discernible structural change(s) in the intermediate state in 0.96 m GdnHCl. hFGF-1 in the intermediate state (0.96 m GdnHCl) does not bind to its ligand, sucrose octasulfate. Limited proteolytic digestion experiments and hydrogen-deuterium exchange monitored by (15)N heteronuclear single quantum coherence (HSQC) spectra show that the conformational flexibility of the protein in the intermediate state is significantly higher than in the native conformation. (15)N spin relaxation experiments show that many residues located in beta-strands IX, X, and XI exhibit conformational motions in the micro- to millisecond time scale. Analysis of (15)N relaxation data in conjunction with the amide proton exchange kinetics suggests that residues in the beta-strands II, VIII, and XII possibly constitute the stability core of the protein in the near-native intermediate state.  相似文献   

20.
We have demonstrated that calbindin D(9k) can be converted into a calcium-sensing switch (calbindin-AFF) by duplicating the C-terminal half of the protein (residues 44-75) and appending it to the N-terminus (creating residues 44'-75'). This re-engineering results in a ligand-driven interconversion between two native folds: the wild-type structure (N) and a circularly permuted form (N'). The switch between N and N' is predicted to involve exchange of the 44-75 and 44'-75' segments, possibly linked to their respective folding and unfolding. Here we present direct structural evidence supporting the existence of N and N'. To isolate the N' and N conformations, we introduced the knockdown Ca(2+) binding mutation Glu → Gln at position 65 (E65Q mutant) or at the analogous position 65' (E65'Q mutant). E65Q and E65'Q are therefore expected to adopt conformations N' and N, respectively, in the presence of calcium. Though the amino acid sequences of E65Q and E65'Q differ at only these two positions, nuclear magnetic resonance resonance assignments, chemical shifts, and paramagnetic relaxation enhancement data reveal that they take on separate structures when bound to calcium. Both proteins are comprised of a well-folded domain and a disordered region. However, the segment that is disordered in E65Q (residues 44-75) is folded in E65'Q, and the region that is disordered in E65'Q (residues 44'-75') is structured in E65Q. The results demonstrate that the N' N' conformational change is mediated by a mutually exclusive folding reaction in which folding of one segment of the protein is coupled to unfolding of another segment, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号