首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The development of new analytical techniques and the commercial availability of new substrates have led to the purification and characterization of a large number of xylan-degrading enzymes. Furthermore, the introduction of recombinant DNA technology has resulted in the selection of xylanolytic enzymes that are more suitable for industrial applications. For a successful integration of xylanases in industrial processes, a detailed understanding of the mechanism of enzyme action is, however, required. This review gives an overview of various xylanolytic enzyme systems from bacteria and fungi that have been described recently in more detail.  相似文献   

2.
Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.  相似文献   

3.
For centuries the South Pacific islanders have consumed kava (Piper methysticum) as a ceremonial intoxicating beverage. More recently, caplets of kava extracts have been commercialized for their anxiolytic and antidepressant activities. Several cases of hepatotoxicity have been reported following consumption of the commercial preparation whereas no serious health effects had been documented for the traditional beverage. A detailed comparison of commercial kava extracts (prepared in acetone, ethanol or methanol) and traditional kava (aqueous) reveals significant differences in the ratio of the major kavalactones. To show that these variations could lead to differences in biological activity, the extracts were compared for their inhibition of the major drug metabolizing P450 enzymes. In all cases (CYP3A4, CYP1A2, CYP2C9, and CYP2C19), the inhibition was more pronounced for the commercial preparation. Our results suggest that the variations in health effects reported for the kava extracts may result from the different preparation protocols used.  相似文献   

4.
The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina), is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline) and phosphoric acid swollen (amorphous) cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A) resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.  相似文献   

5.
Summary. The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.  相似文献   

6.
The white-rot basidiomycete Lentinula edodes produces shiitake, a commercial edible mushroom grown on wood. Large-scale cultivation of this fungus on lignocellulose particles provides the opportunity to recover its extracellular enzymes in quantity from spent commercial cultures. Here we show that anion exchange chromatography is a particularly useful step in the initial purification and identification of the range of enzymes present in a crude culture filtrate made from a commercial wood-containing medium. We report the level of major degradative enzyme activities detected both in crude filtrates and in fractions resulting from their fractionation by a single representative chromatography run. The enzymes included cellulases, hemicellulases, fungal cell wall-degrading enzymes, oxidative enzymes (including potential ligninases), acid phosphatases, and acid proteinases. Screening for activity in fractions with multiple substrates was a powerful method both to determine the range of different polysaccharidase activities present and to pinpoint enzymes that either were nonspecific or that required further purification.  相似文献   

7.
Chemical catalysts are being replaced by biocatalysts in almost all industrial applications due to environmental concerns, thereby increasing their demand. Enzymes used in current industries are produced in microbial systems or plant seeds. We report here five newly launched leaf‐enzyme products and their validation with 15 commercial microbial‐enzyme products, for detergent or textile industries. Enzymes expressed in chloroplasts are functional at broad pH/temperature ranges as crude‐leaf extracts, while most purified commercial enzymes showed significant loss at alkaline pH or higher temperature, required for broad range commercial applications. In contrast to commercial liquid enzymes requiring cold storage/transportation, chloroplast enzymes as a leaf powder can be stored up to 16 months at ambient temperature without loss of enzyme activity. Chloroplast‐derived enzymes are stable in crude‐leaf extracts without addition of protease inhibitors. Leaf lipase/mannanase crude extracts removed chocolate or mustard oil stains effectively at both low and high temperatures. Moreover, leaf lipase or mannanase crude‐extracts removed stain more efficiently at 70 °C than commercial microbial enzymes (<10% activity). Endoglucanase and exoglucanase in crude leaf extracts removed dye efficiently from denim surface and depilled knitted fabric by removal of horizontal fibre strands. Due to an increased demand for enzymes in the food industry, marker‐free lettuce plants expressing lipase or cellobiohydrolase were created for the first time and site‐specific transgene integration/homoplasmy was confirmed by Southern blots. Thus, leaf‐production platform offers a novel low‐cost approach by the elimination of fermentation, purification, concentration, formulation and cold‐chain storage/transportation. This is the first report of commercially launched protein products made in leaves and validated with current commercial products.  相似文献   

8.
Keratinases are well-recognized enzymes with the unique ability to attack highly cross-linked, recalcitrant structural proteins such as keratin. Their potential in environmental clean-up of huge amount of feather waste has been well established since long. Today, they have gained importance in various other biotechnological and pharmaceutical applications. However, commercial availability of keratinases is still limited. Hence, to attract entrepreneurs, investors and enzyme industries it is utmost important to explicitly present the market potential of keratinases through detailed account of its application sectors. Here, the application areas have been divided into three parts: the first one is dealing with the area of exclusive applications, the second emphasizes protease dominated sectors where keratinases would prove better substitutes, and the third deals with upcoming newer areas which still await practical documentation. An account of benefits of keratinase usage, existing market size, and available commercial sources and products has also been presented.  相似文献   

9.
Engineering aspects of solid state fermentation have not been available in spite of the recent interest in the technique and the appearance of a number of reviews on this subject. The present state of the art regarding substrate uptake, oxygen transfer, growth characteristics, growth estimation, control systems for maintaining parameters, mathematical models, design of fermenters and automation of fermentations does not provide a detailed insight. The work carried out at the Central Food Technological Research Institute, Mysore, on the development of a large-scale solid state fermenter, comparative cost estimation of SSF and submerged fermentation as well as development of know-how for production of a variety of food enzymes, has led to the commercial exploitation of the technology by industry. Future R&D needs in this area, neglected at present but yet so promising, are indicated.  相似文献   

10.
Gellan gum is a widely used commercial material, available in many different forms. Its economic importance has led to studies into the biosynthesis of exopolysaccharide gellan gum, which is industrially prepared in high yields using Sphingomonas elodea ATCC 31461. Glucose-1-phosphate uridylyltransferase mediates the reversible conversion of glucose-1-phosphate and UTP into UDP-glucose and pyrophosphate, which is a key step in the biosynthetic pathway of gellan gums. Here we present the X-ray crystal structure of the glucose-1-phosphate uridylyltransferase from S. elodea. The S. elodea enzyme shares strong monomeric similarity with glucose-1-phosphate thymidylyltransferase, several structures of which are known, although the quaternary structures of the active enzymes are rather different. A detailed comparison between S. elodea glucose-1-phosphate uridylyltransferase and available thymidylyltransferases is described and shows remarkable structural similarities, despite the low sequence identities between the two divergent groups of proteins.  相似文献   

11.
The cytochromes P450 (CYP or P450) are a large superfamily of haem‐containing enzymes found in all domains of life. They catalyse a variety of complex reactions, predominantly mixed‐function oxidations, often displaying highly regio‐ and/or stereospecific chemistry. In streptomycetes, they are predominantly associated with secondary metabolite biosynthetic pathways or with xenobiotic catabolism. Homologues of one family, CYP105, have been found in all Streptomyces species thus far sequenced. This review looks at the diverse biological functions of CYP105s and the biosynthetic/catabolic pathways they are associated with. Examples are presented showing a range of biotransformative abilities and different contexts. As biocatalysts capable of some remarkable chemistry, CYP105s have great biotechnological potential and merit detailed study. Recent developments in biotechnological applications which utilize CYP105s are described, alongside a brief overview of the benefits and drawbacks of using P450s in commercial applications. The role of CYP105s in vivo is in many cases undefined and provides a rich source for further investigation into the functions these enzymes fulfil and the metabolic pathways they participate in, in the natural environment.  相似文献   

12.
Lignin-derived inhibition is a major obstacle restricting the enzymatic hydrolysis of cell wall polysaccharides especially with softwood lignocellulosics. Enzyme adsorption on lignin is suggested to contribute to the inhibitory effect of lignin. The interaction of cellulases with softwood lignin was studied in the present work with commercial Trichoderma reesei cellulases (Celluclast) and lignin-rich residues isolated from steam pretreated softwood (SPS) by enzymatic and acid hydrolysis. Both lignin preparations inhibited the hydrolysis of microcrystalline cellulose (Avicel) and adsorbed the major cellulases present in the commercial cellulase mixture. The adsorption phenomenon was studied at low temperature (4°C) and at the typical hydrolysis temperature (45°C) by following activities of free and lignin-bound enzymes. Severe inactivation of the lignin-bound enzymes was observed at 45°C, however at 4°C the enzymes retained well their activity. Furthermore, SDS-PAGE analysis of the lignin-bound enzymes indicated that very strong interactions form between the residue and the enzymes at 45°C, because the enzymes were not released from the residue in the electrophoresis. These results suggest that heat-induced denaturation may take place on the surface of softwood lignin at the hydrolysis temperature.  相似文献   

13.
The pectic substances, located primarily in the middle lamella between cells in higher plant tissues, are complex polysaccharides. They include the negatively charged rhamnogalacturonans, and the neutral arabinogalactans I and II and l-arabinans. These polysaccharides add viscosity to juices but may also form hazes and precipitates and retard maximum recovery of juices from the fruit. The rhamnogalacturonans are degraded by the enzymes pectin methylesterase and polygalacturonase normally present in plant tissues and by these enzymes and pectate lyase in microbially derived commercial pectic enzymes added during processing. The presence of a?abinofuranosidase, which degrades l-arabinans, in commercial pectic enzyme preparations, can cause haze formation in juices such as apple and pear.  相似文献   

14.
The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the re calcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis pro cess, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of celulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc.  相似文献   

15.
Oxygenases carry out the regio-, stereo- and chemoselective introduction of oxygen in a tremendous range of organic molecules. This versatility has already been exploited in several commercial processes. There are, however, many hurdles to further practical large-scale applications. Here, we review various issues in biocatalysis using these enzymes, such as screening strategies, overoxidation, uncoupling, substrate uptake, substrate toxicity, and oxygen mass transfer. By addressing these issues in a systematic way, the productivity of promising laboratory scale biotransformations involving oxygenases may be improved to levels that allow industry to realise the full commercial potential of these enzymes.  相似文献   

16.
Acyl-CoA mutases are a growing class of adenosylcobalamin-dependent radical enzymes that perform challenging carbon skeleton rearrangements in primary and secondary metabolism. Members of this class of enzymes must precisely control substrate positioning to prevent oxidative interception of radical intermediates during catalysis. Our understanding of substrate specificity and catalysis in acyl-CoA mutases, however, is incomplete. Here, we present crystal structures of IcmF, a natural fusion protein variant of isobutyryl-CoA mutase, in complex with the adenosylcobalamin cofactor and four different acyl-CoA substrates. These structures demonstrate how the active site is designed to accommodate the aliphatic acyl chains of each substrate. The structures suggest that a conformational change of the 5′-deoxyadenosyl group from C2′-endo to C3′-endo could contribute to initiation of catalysis. Furthermore, detailed bioinformatic analyses guided by our structural findings identify critical determinants of acyl-CoA mutase substrate specificity and predict new acyl-CoA mutase-catalyzed reactions. These results expand our understanding of the substrate specificity and the catalytic scope of acyl-CoA mutases and could benefit engineering efforts for biotechnological applications ranging from production of biofuels and commercial products to hydrocarbon remediation.  相似文献   

17.
It is often suggested that changes in simple biochemical/physiological responses may be useful for predicting the impacts of pollutants at population and community levels of biological organization. There are serious conceptual constraints to such a thesis and its seems likely that such simple responses can go no further than serving as early warning systems for delineating potential areas of pollutant impact--areas which (if shown to be significant in size) can then be subjected to more detailed population and community type studies. Environmental testing is a prerequisite for any response suggested to have value as a biological monitoring index and the induction of mixed-function oxygenase (MFO) enzymes has now been validated in a large number of field studies worldwide. Investigations have progressed from documenting induction near localized sources of hydrocarbon contamination to more diffuse sources of mixed organic pollution originating from industrial and domestic sources. Studies in the Great Lakes and Europe have demonstrated that the induction of MFO enzymes is a biological response of sufficient sensitivity to discriminate water quality differences over broad geographical areas. We suggest that as an early warning system, the induction of these enzymes can fulfill the requirement of "most sensitive biological response" for assessing a variety of organic pollution conditions. Given the high level of sensitivity of the MFO enzyme response, negative as well as positive field trials can be of value in addressing concerns about the toxicological significance of "high-profile" chemicals (and potent inducers) such as polycyclic aromatic hydrocarbons and organochlorines. MFO enzyme induction can also be an economical tool for environmental managers for reacting to real or perceived concerns about pollution such as effects on commercial fish stocks at sites of petroleum hydrocarbon development in the oceans.  相似文献   

18.
Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.  相似文献   

19.
Lactone compounds are widely distributed in nature and play important roles in organisms. These compounds are synthesized and metabolized enzymatically in vivo; however, detailed investigation of these enzymes lags behind that of other common enzymes. In this paper, recent work on the enzymes involved in the metabolism of lactone compounds will be reviewed. In particular, fundamental and application studies on lactonases and Baeyer-Villiger monooxgenases of microbial origin are described.  相似文献   

20.
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2 h vs 12 h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号