首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular dextranases were extracted from a dextran-degrading microorganism, Bacteroides oralis Ig4a, which had been isolated from human dental plaque, and purified. Crude enzyme preparations obtained from a broth culture supernatant by salting out with ammonium sulfate were subjected to column chromatography on DEAE-cellulose and subsequent Bio-Gel p-100, followed by isoelectric focusing. Two kinds of enzyme preparations, Enzymes I and II, with the ability to degrade soluble dextran were obtained. The optimal pHs of Enzymes I and II were 5.5 and 6.8, and the isoelectric points were pH 4.5 and 6.5, respectively. The molecular weights of Enzymes I and II were estimated by SDS-PAGE to be 44,000 and 52,000. Both enzymes were inhibited by Pb2+ and Fe3+, but not by Ca2+, Mg2+, Zn2+, or Fe2+. Neither the presence of EDTA nor iodoacetamide had any appreciable effect on the enzyme activity. The enzyme activity was independent of any of these metal ions. Enzyme I liberated glucose, isomaltose, maltotriose and higher oligosaccharides from dextran. In contrast, Enzyme II liberated only glucose from dextran and was assumed to be an exoglycosidase. Neither of the enzymes degraded modified insoluble glucan, which is a partially oxidized mutan of S. mutans containing predominantly α-(1, 3) linkages.  相似文献   

2.
3.
We have studied the subcellular localization of pentachlorophenol 4-monooxygenase (PCP4MO) in Sphingobium chlorophenolicum ATCC 39723 during induction by pentachlorophenol (PCP). Using a monoclonal antibody CL6 specific to the native and recombinant PCP4MO, the enzyme was primarily found soluble as determined by immunoblot and ELISA analyses of cellular fractions. However, the enzyme was observed both in the soluble and membrane-bound forms during induction for 2-4 h, suggesting its translocation out from the cytoplasm. Electron microscopy confirmed that PCP4MO was predominantly present in the cytoplasm at 1 h, whereas at 4 h significant amount was detected also in the membrane and periplasm. After 6 h, the majority of PCP4MO was in the periplasm and only small amount was bound to the inner membrane or present in the cytoplasm. The results indicate that after biosynthesis PCP4MO in S. chlorophenolicum is exported via the inner membrane to the final location in the periplasm.  相似文献   

4.
The Nicotiana tabacum Nt-4/1 protein is a plant-specific protein of unknown function. Analysis of bacterially expressed Nt-4/1 protein in vitro revealed that the protein secondary structure is mostly alpha-helical and suggested that it could consist of three structural domains. Earlier studies of At-4/1, the Arabidopsis thaliana-encoded ortholog of Nt-4/1, demonstrated that GFP-fused At-4/1 was capable of polar localization in plant cells, association with plasmodesmata, and cell-to-cell transport. Together with the At-4/1 ability to interact with a plant virus movement protein, these data supported the hypothesis of the At-4/1 protein involvement in viral transport through plasmodesmata. Studies of the Nt-4/1-GFP fusion protein reported in this paper revealed that the protein was localized to cytoplasmic bodies, which were co-aligned with actin filaments and capable of actin-dependent intracellular movement. The Nt-4/1-GFP bodies, being non-membrane structures, were found in association with the plasma membrane, the tubular endoplasmic reticulum and endosome-like structures. Bimolecular fluorescence complementation experiments and inhibition of nuclear export showed that the Nt-4/1 protein was capable of nuclear-cytoplasmic transport. The nuclear export signal (NES) was identified in the Nt-4/1 protein by site-directed mutagenesis. The Nt-4/1 NES mutant was localized to the nucleoplasm forming spherical bodies. Immunogold labeling and electron microscopy of cytoplasmic Nt-4/1-containing bodies and nuclear structures containing the Nt-4/1 NES mutant revealed differences in their fine structure. In mammalian cells, Nt-4/1-GFP formed cytoplasmic spherical bodies similar to those found for the Nt-4/1 NES mutant in plant cell nuclei. Using dynamic laser light scattering and electron microscopy, the Nt-4/1 protein was found to form multimeric complexes in vitro.  相似文献   

5.
人类GABARAPL2基因的亚细胞定位   总被引:2,自引:0,他引:2  
为了对GABARAPL2(GABAA受体相关蛋白相似蛋白2)基因的功能进行初步分析,首先通过同源比较的方法将序列与其同源物进行比较,发现GABARAPL2的氨基酸序列与GABARAP(GABAA受体相关蛋白)高度同源,而GABARAP已证实通过结合细胞骨架的微蛋白,使GABAA受体聚集,定位在细胞膜上,本文采用PCR法从人脑组织的cDNA文库中扩增出GABARAPL2的cDNA,克隆至T质粒载体中进行测序验证,然后以此为模板引物中引入酶切位点再次PCR,扩增出GABARAPL2的开放阅读框,并将其插入到加强型绿色荧光蛋白融合表达载体EGFP中,将绿色荧光蛋白标记的GABARAPL2和GABARAP分别转染HLF细胞株,结果两种蛋白的分布情况基本一致,在细胞质内和核内均有分布,而且核内的分布较胞质为多,结构功能域分析表明,GABARAPL2含有蛋白激酶C磷酸化位点和酪氨酸激酶磷酸化位点,可能通过磷酸化参与细胞骨架的变化,结论 GABARAPL2和GABARAP不仅在胞质中作为受体相关蛋白协助受体的聚集、定位,还参与体内许多其它重要的生理过程。  相似文献   

6.
The localization of the aldolase B isozyme was determined immunohistochemically in rat kidney and liver using a polyclonal antibody. Aldolase B was preferentially localized in a nuclear region of hepatocytes from the periportal region and was absent in those from the perivenous region. Aldolase B was also preferentially localized in the proximal tubules and was absent in other structures of the renal cortex as well as in the renal medulla. Using reflection confocal microscopy, the enzyme was preferentially localized in a nuclear position in liver and renal cells, which was similar to the cellular and intracellular location found for the gluconeogenic enzyme fructose-1,6-bisphosphatase (Sáez et al. [1996] J. Cell. Biochem. 63:453-462). Subcellular fractionation studies followed by enzyme activity assays revealed that aldolase activity was associated with subcellular particulate structures. Overall, the data suggest that different aldolase isoenzymes are needed in the glycolytic and gluconeogenic pathways.  相似文献   

7.
8.
Fractionation of rat liver by homogenization and differential centrifugation revealed that only about 83% of the transglutaminase activity in the tissue is in a soluble form, and that the remainder is associated with the particulate fraction. This latter activity remained with the membranes even after they were extensively washed to remove 99% of such soluble enzymes as lactate dehydrogenase and aldolase. Subsequent fractionation of the membranes by isopycnic density gradient centrifugation in sucrose resulted in a single band of transglutaminase activity at a density of 1.194 g/cm3. This activity was coincident with the major band of plasma membranes, which was identified by its content of 5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and leucine aminopeptidase activities. After treatment with digitonin and fractionation on sucrose gradients, the transglutaminase activity and the plasma membrane marker enzyme activities were found at a new density of 1.210 g/cm3, while the enzyme markers for the other membrane fractions remained unchanged. From these data, we conclude that approximately 17% of the transglutaminase activity in rat liver is specifically associated with the plasma membranes.  相似文献   

9.
It is well-established that the endoplasmic reticulum is the major site of phosphatidylinositol (PtdIns) synthesis. The PtdIns synthetic ability of other organelles, such as plasma membrane and nucleus, remains controversial. In the present study, we re-examine this question by comparing PtdIns synthesis in isolated cytoplasts (enucleated cells) with that in corresponding karyoplasts (nuclei surrounded by plasma membrane but lacking most cytoplasmic components). We report that cytoplasts are competent to carry out both basal and stimulated PtdIns synthesis as well as polyphosphoinositide hydrolysis, while karyoplasts can neither synthesize PtdIns nor hydrolyze phosphoinositides in response to agonists. The karyoplasts are, however, capable of synthesizing phosphatidylcholine (PtdCho), as previously reported. From these data, we conclude that PtdIns synthesis is limited to cytoplasmic components, and cannot be sustained by either plasma membrane or nucleus under conditions that permit robust PtdCho synthesis.  相似文献   

10.
《Plant science》1988,55(3):217-221
Maize root homogenates were prepared and centrifuged to sediment the mitochondria. The supernatants (6 KS) and pellets (6 KP) were collected and fractionated on linear sucrose density gradients. The distribution of carboxypeptidase was similar to that of α-mannosidase (a soluble vacuolar enzyme) and glucose-6-phosphate dehydrogenase (a soluble cytoplasmic enzyme). Carboxypeptidase was therefore a soluble in maize root cells and cannot be used as a marker for the tonoplast.  相似文献   

11.
12.
To investigate the molecular mechanism of intracellular degradation of type I collagen in normal corneal endothelial cells (CEC), we studied the role of prolyl 4-hydroxylase (P4-H) and protein disulfide-isomerase (PDI; the beta subunit of P4-H) during procollagen I biosynthesis. When the subcellular localization of P4-H and PDI was determined, P4-H demonstrated a characteristic diffuse endoplasmic reticulum (ER) pattern, whereas PDI showed a slightly more restricted distribution within the ER. When colocalization of procollagen I with the enzymes was examined, procollagen I and PDI showed a large degree of colocalization. P4-H and procollagen I were predominantly colocalized at the perinuclear site. When colocalization of type IV collagen with PDI and P4-H was examined, type IV collagen was largely colocalized with PDI, which showed a wider distribution than type IV collagen. Type IV collagen is similarly colocalized with P4-H, except in some perinuclear sites. The colocalization profiles of procollagen I with both PDI and P4-H were not altered in cells treated with alpha,alpha'-dipyridyl compared to those of the untreated cells. The underhydroxylated type IV collagen demonstrated a colocalization profile with PDI similar to that observed with procollagen I, while the underhydroxylated type IV collagen was predominantly colocalized with P4-H at the perinuclear sites. Immunoblot analysis showed no real differences in the amounts of the beta subunit/PDI and the catalytic alpha subunit of P4-H in CEC compared to those of corneal stromal fibroblasts (CSF). When protein-protein association was determined, procollagen I was associated with PDI much more in CEC than it was in CSF, whereas type IV collagen showed no differential association specificity to PDI in both cells. Limited proteolysis of the newly synthesized intracellular procollagen I with pepsin showed that procollagen I in CEC was degraded by pepsin, whereas CSF contained type I collagen composed of alpha1(I) and alpha2(I). These findings suggest that procollagen I synthesized in CEC is not in triple helical conformation and that the improperly folded procollagen I may be preferentially associated with PDI before targeting to the intracellular degradation.  相似文献   

13.
Subcellular localization of cellulases in auxin-treated pea   总被引:5,自引:1,他引:4       下载免费PDF全文
Two forms of cellulase, buffer soluble (BS) and buffer insoluble (BI), are induced as a result of auxin treatment of dark-grown pea epicotyls. These two cellulases have been purified to homogeneity. Antibodies raised against the purified cellulases were conjugated with ferritin and were used to localize the two cellulases. Tissue sections were fixed in cold paraformaldehyde-glutaraldehyde and incubated for 1 h in the ferritin conjugates. The sections were washed with continuous shaking for 18 h and subsequently postfixed in osmium tetroxide. Tissue incubated in unconjugated ferritin was used as a control. A major part of BI cellulase is localized at the inner surface of the cell wall in close association with microfibrils. BS cellulase is localized mainly within the distended endoplasmic reticulum. Gogli complex and plasma membrane appear to be completely devoid of any cellulase activity. These observations are consistent with cytochemical localization and biochemical data on the distribution of these two cellulases among various cell and membrane fractions.  相似文献   

14.
Tubulin was measured through [3H]colchicine-binding in membrane and soluble components of chick retinal subcellular fractions. Total tubulin content was concentrated in the synaptosomal and rod outer segment fractions. Although in total retinal homogenate only 20% of total tubulin was associated to the membrane, in synaptosomes and photoreceptor outer segments, up to 50% of tubulin was bound to the membrane fraction. Results raise the possibility of tubulin participation in transmembrane phenomena which are common to transmitter release and photoexcitation.  相似文献   

15.
16.
17.
The mechanisms of transport and distribution of nucleotide sugars in the cell remain unclear. In an attempt to further characterize nucleotide sugar transporters (NSTs), we determined the subcellular localization of overexpressed epitope-tagged canine UDP-GlcNAc transporter, human UDP-Gal transporter splice variants (UGT1 and UGT2), and human SLC35B4 transporter splice variants (longer and shorter version) by indirect immunofluorescence using an experimental model of MDCK wild-type and MDCK-RCA(r) mutant cells. Our studies confirmed that the UDP-GlcNAc transporter was localized to the Golgi apparatus only and its localization was independent of the presence of endogenous UDP-Gal transporter. After overexpression of UGT1, the protein colocalized with the Golgi marker only. When UGT2 was overexpressed, the protein colocalized with the endoplasmic reticulum (ER) marker only. When UGT1 and UGT2 were overexpressed in parallel, UGT1 colocalized with the ER and Golgi markers and UGT2 with the ER marker only. This suggests that localization of the UDP-Gal transporter may depend on the presence of the partner splice variant. Our data suggest that proteins involved in nucleotide sugar transport may form heterodimeric complexes in the membrane, exhibiting different localization which depends on interacting protein partners. In contrast to previously published data, both splice variants of the SLC35B4 transporter were localized to the ER, independently of the presence of endogenous UDP-Gal transporter.  相似文献   

18.
19.
In almost all cell types, adenylate cyclase is located in the plasma membrane. In lymphocytes, however, this enzyme has been claimed to be largely present in intracellular compartments. In this study, the distribution of adenylate cyclase activity in subcellular fractions of calf thymocytes was reinvestigated by a balance sheet approach. When subcellular fractionation was performed in the absence of ATP and dithiothreitol, less than a half of the homogenate basal activity could be recovered in the fractions, and this amount was distributed almost equally in three main compartments: the plasma membrane fraction, the microsomal and mitochondrial fractions and the nuclear fraction. However, if enzyme activity in the above fractions was measured in the presence of the stimulatory agents NaF, guanylylimidophosphate or guanosine 5'-O-(3-thio)triphosphate, or if the subcellular fractionation was performed in media containing ATP and dithiothreitol, the overall recovered activity greatly increased (up to 90%) and the distribution was shifted in favour of the plasma membrane fraction (up to 65% of the recovered activity). The adenylate cyclase properties were similar in all fractions. The ionophore alamethicin did not alter the subcellular distribution of the enzyme. The localization of adenylate cyclase in thymocytes thus appears to be primarily, if not uniquely, in the plasma membrane, as generally found in other cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号