首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acetone extract prepared from the plasma membranes of human erythrocytes contained substances which induced the contraction of the thoracic aortic strip of rabbit in vitro and caused blood pressure elevation in rat upon intravenous injection. The contractile response was inhibited by the alpha 1-adrenergic antagonist prazosin. By HPLC/electrochemical detection as well as radioenzymatic assay, large amounts of norepinephrine (NE) (14 +/- 4 [SE] ng/ml packed cells) and epinephrine (E) (16 +/- 2 ng/ml packed cells) were found in the extract. Using the same amounts as in the extract, we were able to demonstrate additive effect between NE and E. The possibility that erythrocyte membranes may play a role in the regulation of NE and E in circulation is suggested.  相似文献   

2.
Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals.  相似文献   

3.
The effects of exercise and catecholamineson platelet reactivity or coagulation and fibrinolysis appear to beinconsistent. This may be partly due to the methods employed inprevious studies. In the present study, we investigated the effects ofacute aerobic exercise and catecholamines on the thrombotic status by anovel in vitro method, shear-induced hemostatic plug formation(hemostatometry), using nonanticoagulated (native) blood. Aerobicexercise (60% maximal O2consumption) was performed by healthy male volunteers for 20 min, andthe effect on platelet reactivity and coagulation was assessed byperforming hemostatometry before and immediately after exercise.Exercise significantly increased shear-induced platelet reactivity,coagulation, and catecholamine levels. The effect of catecholamines onplatelet reactivity and coagulation was assessed in vitro by addingcatecholamines to blood collected in the resting state. The mainfindings of the present study are that elevation of circulatingnorepinephrine at levels that are attained during exercise causesplatelet hyperreactivity and a platelet-mediated enhanced coagulation.This may be a mechanism of an association of aerobic exercise withthrombotic risk.

  相似文献   

4.
5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles.  相似文献   

5.
6.
Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects.  相似文献   

7.
8.
9.
Character of tissue changes as well as their reversibility could vary depending on the duration of myocardial ischemia. Long (over 30 min) ischemia leads to a massive release of myocardial interstitial norepinephrine. We tried to investigate changes in the myocardial sympathetic system produced by a relatively long episode of ischemia-repeperfusion. Myocardial norepinephrine has been collected by means of microdialysis probe during repeated occlusions of the left descending coronary artery. It was shown that long episode of occulusion-reperfusion resulted in suppression of massive norepinephrine release in response to second (test) occlusion. The features of norepinephrine release during successive occlusions make it possible to associate this process with the reversibility of the ischemic tissue damages.  相似文献   

10.
The effectiveness of combining the subcutaneous administration of short- and intermediate-acting insulin with the intravenous infusion of glucose in maintaining normoglycemia during labour and delivery in insulin-dependent diabetic women was tested. Fifty women were given intermediate-acting insulin twice daily in doses that were fractions of their usual dose, based on the projected duration of labour. In addition, they were given regular (i.e., short-acting) insulin every 6 hours, the dose being 1% of their total daily insulin dose for every increase of 10 mg/dl above 100 mg/dl (5.6 mmol/l) in the plasma glucose level 1 hour previously; the levels were measured every 3 hours. All the patients were fasting and received a basal intravenous infusion of 6 g/h of glucose; the rate of infusion was increased by 1 g/h for every decrease of 10 mg/dl in the plasma glucose level below 100 mg/dl. The mean plasma glucose levels (+/- standard deviation) were 90 +/- 46 mg/dl after 3 hours of labour, 92 +/- 35 mg/dl after 6 hours, 97 +/- 49 mg/dl after 9 hours and 107 +/- 65 mg/dl after 12 hours. With only one exception, in a premature infant, the 5-minute Apgar scores were identical to those of the infants of nondiabetic women.  相似文献   

11.
The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells.  相似文献   

12.
We recently demonstrated that depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) caused activation of MAPK (Chen, X., and Resh, M. D. (2001) J. Biol. Chem. 276, 34617-34623). MAPK activation was phosphatidylinositol 3-kinase (PI3K)-dependent and involved increased tyrosine phosphorylation of the p85 subunit of PI3K. We next determined whether MbetaCD treatment induced tyrosine phosphorylation of other cellular proteins. Here we report that cholesterol depletion of serum-starved COS-1 cells with MbetaCD or filipin caused an increase in Tyr(P) levels of a 180-kDa protein that was identified as the epidermal growth factor receptor (EGFR). Cross-linking experiments showed that MbetaCD induced dimerization of EGFR, indicative of receptor activation. Reagents that block release of membrane-bound EGFR ligands did not affect MbetaCD-induced tyrosine phosphorylation of EGFR, indicating that MbetaCD activation of EGFR is ligand-independent. Moreover, MbetaCD treatment resulted in increased tyrosine phosphorylation of EGFR downstream targets and Ras activation. Incubation of cells with the specific EGFR inhibitor AG4178 blocked MbetaCD-induced phosphorylation of EGFR, SHC, phospholipase C-gamma, and Gab-1 as well as MAPK activation. We conclude that cholesterol depletion from the plasma membrane by MbetaCD causes ligand-independent activation of EGFR, resulting in MAPK activation by PI3K and Ras-dependent mechanisms. Moreover, these studies reveal a novel mode of action of MbetaCD, in addition to its ability to disrupt membrane rafts.  相似文献   

13.
Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.  相似文献   

14.
Glutathione (GSH) depletion is the earliest biochemical alteration shown to date in brains of Parkinson's disease patients. However, data from animal models show that GSH depletion by itself is not sufficient to induce nigral degeneration. We have previously shown that non-toxic inhibition of GSH synthesis with l-buthionine-(S,R)-sulfoximine in primary midbrain cultures transforms a nitric oxide (NO) neurotrophic effect, selective for dopamine neurons, into a toxic effect with participation of guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG) (Canals, S., Casarejos, M. J., de Bernardo, S., Rodríguez-Martín, E., and Mena, M. A. (2001) J. Neurochem. 79, 1183-1195). Here we demonstrate that arachidonic acid (AA) metabolism through the 12-lipoxygenase (12-LOX) pathway is also central for this GSH-NO interaction. LOX inhibitors (nordihydroguaiaretic acid and baicalein), but not cyclooxygenase (indomethacin) or epoxygenase (clotrimazole) ones, prevent cell death in the culture, even when added 10 h after NO treatment. Furthermore, the addition of AA to GSH-depleted cultures precipitates a cell death process that is indistinguishable from that initiated by NO in its morphology, time course, and 12-LOX, GC, and PKG dependence. The first AA metabolite through the 12-LOX enzyme, 12-hydroperoxyeicosatetraenoic acid, induces cell death in the culture, and its toxicity is greatly enhanced by GSH depletion. In addition we show that if GSH synthesis inhibition persists for up to 4 days without any additional treatment, it will induce a cell death process that also depends on 12-LOX, GC, and PKG activation. In this study, therefore, we show that the signaling pathway AA/12-LOX/12-HPETE/GC/PKG may be important in several pathologies in which GSH decrease has been documented, such as Parkinson's disease. The potentiating effect of NO over such a signaling pathway may be of relevance as part of the cascade of events leading to and sustaining nerve cell death.  相似文献   

15.
Kayser, Bengt, Roland Favier, Guido Ferretti, DominiqueDesplanches, Hilde Spielvogel, Harry Koubi, Brigitte Sempore, and HansHoppeler. Lactate and epinephrine during exercise in altitudenatives. J. Appl. Physiol. 81(6):2488-2494, 1996.We tested the hypothesis that the reported lowblood lactate accumulation ([La]) during exercise inaltitude-native humans is refractory to hypoxia-normoxia transitions byinvestigating whether acute changes in inspiredO2 fraction(FIO2) affect the[La] vs. power output ()relationship or, alternatively, as reported for lowlanders, whetherchanges in [La] vs. on changes inFIO2 are related tochanges in blood epinephrine concentration ([Epi]). Altitude natives [n = 8, age 24 ± 1 (SE) yr, body mass 62 ± 3 kg, height 167 ± 2 cm]in La Paz, Bolivia (3,600 m) performed incremental exercise with twolegs and one leg in chronic hypoxia and acute normoxia (AN). Submaximalone- and two-leg O2 uptake (O2) vs. relationships were not altered byFIO2. AN increased two-legpeak O2 by 10% and peak by 7%. AN paradoxically decreasedone-leg peak O2 by 7%,whereas peak remained the same. The[La] vs. relationships were similar tothose reported in unacclimatized lowlanders. There was a shift to theright on AN, and maximum [La] was reduced by 7 and 8% forone- and two-leg exercises, respectively. [Epi] and[La] were tightly related (mean r = 0.81) independently ofFIO2. Thus normoxiaattenuated the increment in both [La] and [Epi]as a function of , whereas the correlation between[La] and [Epi] was unaffected. These data suggest loose linkage of glycolysis to oxidative phosphorylation under influence from [Epi]. In conclusion, high-altitudenatives appear to be not fundamentally different from lowlanders with regard to the effect of acute changes inFIO2 on [La] during exercise.

  相似文献   

16.
17.
During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch.  相似文献   

18.
19.
Noncaseating granulomas present as a delayed foreign-body reaction to retained pencil-core fragments. The clinical appearance of the lesion can closely resemble melanoma. Surgeons who use pencils as surgical marking implements should be aware that there is a potential risk of developing late pencil-core granulomas. This risk can be reduced by carefully removing any pieces of pencil lead from the wound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号