首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was taken to evaluate the radioprotective effects of melatonin. Male adult albino mice were treated (intraperitoneal, i.p.) with 10 mg/kg melatonin either 1 h before or 1/2 h after exposure to 1.5 Gy of gamma-irradiation. Control, melatonin, irradiated and melatonin plus irradiation groups were sacrificed 24 h following treatment. The incidence of micronuclei (MN) in bone marrow cells was determined in all groups. The results show that melatonin caused a significant reduction in micronuclei polychromatic erythrocytes (MNPCE) when animals were treated with melatonin before and not after exposure to radiation. Mitotic and meiotic metaphases were prepared from spermatogonial and primary spermatocytes, respectively. Examination and analysis of metaphases showed no mutagenic effect of melatonin on chromosomal aberration (CA) frequency in spermatogonial chromosomes. Administration of one single dose of melatonin to animals before irradiation lowered total CA from 46 to 32%. However, no significant effect was observed when melatonin was given after irradiation. Similarly, the frequency of CA in meiotic metaphases decreased from 43.5% in the irradiated group to 31.5% in the irradiated group treated with melatonin 1 h before irradiation, but no change was observed when melatonin was administered after irradiation. The data obtained in this study suggest that melatonin administration confers protection against damage inflicted by radiation when given prior to exposure to irradiation and not after, and support the contention that melatonin radioprotection is achieved by its ability as a scavenger for free radicals generated by ionizing radiation.  相似文献   

2.
We studied the effect of antioxidants such as N-acetylcysteine (NAC, 10 mM) and alpha-lipoic acid (ALA, 1.25 mM) and of the hormone melatonin (1 microM) on the ability of murine hepatoma cells MH22a to develop tumors in syngenic mice (C3HA) after subsutaneous injection. Tumor formation and development slowed down and mouse mortality decreased when the injected cells were pretreated by NAC, ALA or melatonin during 20 h. Melatonin had the most marked effect. Tumors appeared in 100 % cases after 10 days in control mice when untreated cells had been injected; injection of cells pretreated by NAC or ALA resulted in tumor formation only in 40 and 53 % of mice, respectively. When cells were pretreated with melatonin the tumors appeared only in 18-20 days after injection. Until the end of the observation (36 days) 67 % of control mice died, but when the cells were pretreated by NAC or ALA mouse death-rate was 20 and 53 %, respectively. In the case of melatonin we did not observed any dead mice at all. We showed that treatment by antioxidants delayed (NAC) or completely inhibited (ALA) cell cycle of hepatoma cells. Cell cycle was restored after removal of the antioxidants. Melatonin did not change cell cycle phase distribution. We conclude that there is no direct correlation between loss of tumorigenic properties and changing of proliferative activity of hepatoma cells. Different mechanisms of antioxidants and melatonin action resulting in transient tumor phenotype normalization are discussed.  相似文献   

3.
Pinealectomy enhances tumor growth and metastatic spread in experimental animals. This effect is only in part due to melatonin since melatonin-free pineal extracts containing yet unidentified pineal substances have also shown tumor inhibiting activity. Despite numerous reports suggesting melatonin as a potential anti-cancer agent there have not been sufficient clinical trials to define the actual therapeutic potential of melatonin for the treatment of human cancers. To help fill this gap, we used a chemosensitivity assay designed to test the sensitivity of tumors from individual patients towards chemotherapeutic drugs for assessing the effect of melatonin and pineal extracts on primary human tumor cells. Primary cell cultures from seven ovarian and six mammary tumors were incubated with melatonin, the pineal extract YC05R (containing substances between 500 and 1000 daltons) and chemotherapeutic drugs. The pineal extract YC05R inhibited growth of all tumors in a dose-dependent manner. Physiological concentrations of melatonin (10(-8)-10(-10) M) inhibited the growth of one out of six mammary carcinomas in a dose-dependent manner. Primary cell cultures from three ovarian tumors were affected by melatonin in different ways, i.e., two were inhibited and one was slightly stimulated. There was no correlation between sensitivity towards melatonin and sex steroid receptor status, stage or grade of the tumor. It is concluded that, 1), melatonin may be an inhibitor of human mammary and ovarian carcinoma in individual cases and, 2), the pineal gland contains very active anti-tumor substances inhibiting both, the mammary and ovarian tumors, tested. These substances require chemical and biological identification.  相似文献   

4.
5.
Melatonin and light synchronize the biological clock and are used to treat sleep/wake disturbances in humans. However, the two treatments affect circadian rhythms differently when they are combined than when they are administered individually. To elucidate the nature of the interaction between melatonin and light, the present study assessed the effect of melatonin on circadian timing and immediate-early gene expression in the suprachiasmatic nucleus (SCN) when administered in the presence of light. Male C3H/HeN mice, housed in constant dark in cages equipped with running wheels, were treated with either melatonin (90 microg, s.c.) or vehicle (3% ethanol-saline) 5 min prior to exposure to light (15 min, 300 lux) at various times in the circadian cycle. Combined treatment resulted in lower magnitude phase delays of circadian activity rhythms than those obtained with light alone during the early subjective night and advances in phase when melatonin and light were administered during the subjective day (p < .001). The reduction in phase delays with combined treatment at Circadian Time (CT) 14 was significant when light exposure measured 300 lux but not at lower light levels (p < .05). When light preceded melatonin administration, the inhibition of phase delays attained significance only when the light exposure reached 1000 lux (p < .05). Neither basal nor light-induced expression of c-fos mRNA in the SCN was modified by melatonin administration at CT 14 or CT 22. Together, these results suggest that combined administration of melatonin and light affect circadian timing in a manner not predicted by summing the two treatments given individually. Furthermore, the interaction is not likely to be due to inhibition of photic input to the clock by melatonin but might arise from a photically induced enhancement of melatonin's actions on circadian timing.  相似文献   

6.
New actions of melatonin on tumor metabolism and growth   总被引:3,自引:0,他引:3  
Melatonin is an important inhibitor of cancer growth promotion while the essential polyunsaturated fatty acid, linoleic acid is an important promoter of cancer progression. Following its rapid uptake by tumor tissue, linoleic acid is oxidized via a lipoxygenase to the growth-signaling molecule, 13-hydroxyoctadecadienoic acid (13-HODE) which stimulates epidermal growth factor (EGF)-dependent mitogenesis. The uptake of plasma linoleic acid and its metabolism to 13-HODE by rat hepatoma 7288CTC, which expresses both fatty acid transport protein and melatonin receptors, is inhibited by melatonin in a circadian-dependent manner. This inhibitory effect of melatonin is reversible with either pertussis toxin, forskolin or cAMP. While melatonin inhibits tumor linoleic acid uptake, metabolism and growth, pinealectomy or constant light exposure stimulates these processes. Thus, melatonin and linoleic acid represent two important environmental signals that interact in a unique manner to regulate tumor progression and ultimately the host-cancer balance.  相似文献   

7.
Ionizing radiation is widely used for the treatment of solid tumors and it is thought to act by directly targeting tumor clonogens, also known as stem cells. Apoptosis is a genetically programmed mechanism of cell death often characterized by internucleosomal DNA cleavage. Although it has been previously shown that lymphocytes readily undergo apoptosis in patients receiving anticancer drugs or treatment with ionizing radiation, this is the first study to investigate the influence of radiotherapy and melatonin on apoptosis in rat lymphocytes at two different times of the day. Melatonin, a free radical scavenger, is an endogenous neurohormone predominantly synthesized in and secreted by the pineal gland. It has been shown that melatonin inhibits apoptosis in normal cells but it increases the rate of apoptosis in various cancer cells. Therefore, in the present study, the effect of melatonin on apoptosis in cultured lymphocytes was studied after total body irradiation (TBI) was given to rats in the morning (1 HALO) or evening (13 HALO) with morphological and DNA fragmentation analysis. Two-way analysis of variance (ANOVA) revealed that radiation increased the rate of apoptosis in rat lymphocytes after TBI, and melatonin treatment did not reduce the rate of apoptosis after TBI at either time point. We conclude that the lack of an effect of melatonin on the apoptosis rate in rat lymphocytes might be due to the dose-dependent effect of melatonin, the time course of apoptosis investigated, or the cell type in which apoptosis was examined.  相似文献   

8.
The incidence of endometrial cancer is increasing, making it the fifth most common cancer worldwide. To date, however, there is no standard therapy for patients with recurrent endometrial cancer. Melatonin, a hormone secreted by the pineal gland, has been shown to have anti-tumor effects in various tumor types. Although melatonin is available as a supplement, it has not been approved for cancer treatment. Ramelteon, a selective melatonin receptor type 1 and 2 (MT1/MT2) receptor agonist, has been approved to treat sleep disorders, suggesting that ramelteon may be effective in the treatment of endometrial cancer. To determine whether this agent may be effective in the treatment of endometrial cancer, this study investigated the ability of ramelteon to suppress the proliferation and invasiveness of HHUA cells, an estrogen receptor-positive endometrial cancer cell line. Ramelteon at 10?8 M maximally suppressed the proliferation of HHUA cells, reducing the percentage of Ki-67 positive proliferating cells. This effect was completely blocked by luzindole, a MT1/MT2 receptor antagonist. Furthermore, ramelteon inhibited HHUA cell invasion and reduced the expression of the MMP-2 and MMP-9 genes. These results suggested that ramelteon may be a candidate for the treatment of recurrent endometrial cancer, with activity similar to that of melatonin.  相似文献   

9.
As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.  相似文献   

10.
The tumor growth of murine hepatoma cells MH22a treated with N-acetylcysteine (NAC, 10 mM) and alpha-lipoic acid (ALA, 1.25 mM) antioxidants or hormone melatonin (1 μM) and transplanted into syngeneic (C3HA) mice has been studied. NAC, ALA, or melatonin treatment for 20 h reduced the tumor development and the number of dead mice. Melatonin produced the most pronounced effect. Tumors appeared in 10 days in 100% of control mice injected with untreated cells; the injection of cells pretreated by NAC or ALA generated tumors in 40 and 53% of mice, respectively. Cells pretreated with melatonin produced tumors 18–20 days after injection; 67% of control mice died in 36 days (the observation period). The mortality rate was 20 and 53% if the injected cells were treated with NAC or ALA, respectively. No mice died during this period with melatonin-pretreated cells. We found that treatment with antioxidants delayed (NAC) or completely inhibited (ALA) the progression of the cell cycle of murine hepatoma cells. After the antioxidant removal, the cell cycle was restored. Melatonin did not affect the cell cycle phase distribution. We conclude that there is no direct correlation between the loss of tumorigenic properties and the altered proliferative activity of hepatoma cells. Different mechanisms of antioxidants and melatonin action that underlie the transient normalization of the tumor phenotype are discussed.  相似文献   

11.
Cartilage repair by mesenchymal stem cells (MSCs) often occurs in diseased joints in which the inflamed microenvironment impairs chondrogenic maturation and causes neocartilage degradation. In this environment, melatonin exerts an antioxidant effect by scavenging free radicals. This study aimed to investigate the anti-inflammatory and chondroprotective effects of melatonin on human MSCs in a proinflammatory cytokine-induced arthritic environment. MSCs were induced toward chondrogenesis in the presence of interleukin-1 β (IL-1β) or tumor necrosis factor α (TNF-α) with or without melatonin. Levels of intracellular reactive oxygen species (ROS), hydrogen peroxide, antioxidant enzymes, and cell viability were then assessed. Deposition of glycosaminoglycans and collagens was also determined by histological analysis. Gene expression of chondrogenic markers and matrix metalloproteinases (MMPs) was assessed by real-time polymerase chain reaction. In addition, the involvement of the melatonin receptor and superoxide dismutase (SOD) in chondrogenesis was investigated using pharmacologic inhibitors. The results showed that melatonin significantly reduced ROS accumulation and increased SOD expression. Both IL-1β and TNF-α had an inhibitory effect on the chondrogenesis of MSCs, but melatonin successfully restored the low expression of cartilage matrix and chondrogenic genes. Melatonin prevented cartilage degradation by downregulating MMPs. The addition of luzindole and SOD inhibitors abrogated the protective effect of melatonin associated with increased levels of ROS and MMPs. These results demonstrated that proinflammatory cytokines impair the chondrogenesis of MSCs, which was rescued by melatonin treatment. This chondroprotective effect was potentially correlated to decreased ROS, preserved SOD, and suppressed levels of MMPs. Thus, melatonin provides a new strategy for promoting cell-based cartilage regeneration in diseased or injured joints.  相似文献   

12.
Melatonin is an endogenously generated molecule with free radical scavenging and antioxidant properties. Here, we studied the antiproliferative role of melatonin and other antioxidants on transformed Chinese hamster ovarian cells. Melatonin reduces cell proliferation in a dose- and time-dependent manner. Natural antioxidants which appear in edible plants including resveratrol and vitamin E mimicked the effect of melatonin. Flow cytometer analysis revealed that melatonin treatment reduces the number of cells in S-phase and increases cells in both G0/G1 and G2/M gaps. In addition, melatonin, as well as trolox, caused a clear morphological change by inducing the cells to become spindle shaped and fibroblast-like. Its effect is a reversible phenomenon that disappeared when melatonin was withdrawn from the culture medium. GSH levels are increased after melatonin treatment but pharmacologically blockade of GSH synthesis did not abolish melatonin's antiproliferative effect. Reduction of cell proliferation and the apparent induction of cell differentiation overlapped with melatonin's ability to change the intracellular redox state of CHO cells. We conclude that the cellular redox state may be involved in cellular transformation caused by antioxidants such as melatonin and trolox.  相似文献   

13.
Over the past few years, we have shown that the surge of melatonin in the circulation during darkness represents a potent oncostatic signal to tissue-isolated rat hepatoma 7288CTC, which is an ER+ adenocarcinoma of the liver. This oncostatic effect occurs via a melatonin receptor-mediated suppression of tumor cAMP production that leads to a suppression of the tumor uptake of linoleic acid (LA), an essential fatty acid with substantial oncogenic properties. The ability of LA to promote cancer progression is accomplished by its intracellular metabolism to 13-hydroxyoctadecadienoic acid (13-HODE) which amplifies the activity of the epidermal growth factor receptor/mitogen-activated protein kinase pathway leading to cell proliferation. By blocking tumor LA uptake, melatonin effectively blocks the production of 13-HODE and thus, markedly attenuates tumor growth. A similar effect of melatonin is observed in tissue-isolated, ER+ MCF-7 human breast cancer xenografts and nitrosomethylurea (NMU)-induced rat mammary cancers. When male rats bearing tissue-isolated hepatomas are exposed either to constant bright light (300 lux) or dim light (0.25 lux) during the dark phase of a 12L:12D photoperiod, the latency to onset was significantly reduced while the growth of tumors was markedly increased over a 4 wk period as compared with control tumors in 12L:12D-exposed rats. In constant light- and dim light during darkness-exposed rats, melatonin levels were completely suppressed while tumor growth, LA uptake and 13-HODE production were markedly increased. Similar results were obtained in constant bright light-exposed female rats bearing tissue-isolated NMU-induced mammary cancers or MCF-7 human breast cancer xenografts. To date, these studies provide the most definitive experimental evidence that light exposure during darkness increases the risk of cancer progression via elimination of the nocturnal melatonin signal and its suppression of tumor LA uptake and metabolism to 13-HODE.  相似文献   

14.
The paper presents the data concerning the in vivo effects of melatonin on experimentally-induced tumors in animals and the in vitro effects on animal and human tumor cells. The majority of experimental tumors responded to the melatonin treatment with growth inhibition. However, some negative or opposite results (i.e. stimulation of tumor instead of inhibition) were also reported. Some of the negative results can be attributed to the improper timing of melatonin administration. Melatonin was also shown to inhibit the growth of several animal and human tumor cell lines in vitro. On the basis of these experiments, a hypothesis of the oncostatic action of melatonin was put forward. The mechanism of the postulated action is complex and probably includes: 1) modulation of the endocrine system; 2) modulation of the immune system; 3) the direct oncostatic action of melatonin on tumor cells. The latter includes the recently discovered anti-oxidative action which probably plays an important role in the countering the DNA damage during the radiation challenge or the exposure to chemical carcinogens. It also includes the antiproliferative and pro-apoptotic effects exerted via melatonin receptors expressed by tumor cells. The involvement of the membrane melatonin receptors is mainly assumed. However, the recent data from our and other laboratories suggest also the involvement of RZR/ROR receptors (the putative melatonin nuclear receptors) in both melatonin-induced proliferation inhibition and apoptosis.  相似文献   

15.
Melatonin is reportedly associated with intervertebral disc degeneration (IDD). Endplate cartilage is vitally important to intervertebral discs in physiological and pathological conditions. However, the effects and mechanism of melatonin on endplate chondrocytes (EPCs) are still unclear. Herein, we studied the effects of melatonin on EPC apoptosis and calcification and elucidated the underlying mechanism. Our study revealed that melatonin treatment decreases the incidence of apoptosis and inhibits EPC calcification in a dose‐dependent manner. We also found that melatonin upregulates Sirt1 expression and activity and promotes autophagy in EPCs. Autophagy inhibition by 3‐methyladenine reversed the protective effect of melatonin on apoptosis and calcification, while the Sirt1 inhibitor EX‐527 suppressed melatonin‐induced autophagy and the protective effects of melatonin against apoptosis and calcification, indicating that the beneficial effects of melatonin in EPCs are mediated through the Sirt1‐autophagy pathway. Furthermore, melatonin may ameliorate IDD in vivo in rats. Collectively, this study revealed that melatonin reduces EPC apoptosis and calcification and that the underlying mechanism may be related to Sirt1‐autophagy pathway regulation, which may help us better understand the association between melatonin and IDD.  相似文献   

16.
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.  相似文献   

17.
《Chronobiology international》2013,30(8):1125-1134
Exercise can induce circadian phase shifts depending on the duration, intensity and frequency. These modifications are of special meaning in athletes during training and competition. Melatonin, which is produced by the pineal gland in a circadian manner, behaves as an endogenous rhythms synchronizer, and it is used as a supplement to promote resynchronization of altered circadian rhythms. In this study, we tested the effect of melatonin administration on the circadian system in athletes. Two groups of athletes were treated with 100?mg?day?1 of melatonin or placebo 30?min before bed for four weeks. Daily rhythm of salivary melatonin was measured before and after melatonin administration. Moreover, circadian variables, including wrist temperature (WT), motor activity and body position rhythmicity, were recorded during seven days before and seven days after melatonin or placebo treatment with the aid of specific sensors placed in the wrist and arm of each athlete. Before treatment, the athletes showed a phase-shift delay of the melatonin circadian rhythm, with an acrophase at 05:00?h. Exercise induced a phase advance of the melatonin rhythm, restoring its acrophase accordingly to the chronotype of the athletes. Melatonin, but not placebo treatment, changed daily waveforms of WT, activity and position. These changes included a one-hour phase advance in the WT rhythm before bedtime, with a longer nocturnal steady state and a smaller reduction when arising at morning than the placebo group. Melatonin, but not placebo, also reduced the nocturnal activity and the activity and position during lunch/nap time. Together, these data reflect the beneficial effect of melatonin to modulate the circadian components of the sleep–wake cycle, improving sleep efficiency.  相似文献   

18.
Considering that chemotherapy resistance is vital to the progression of cervical carcinoma, emerging researchers are focused on developing anti-tumor drugs to assist the treatment efficiency of chemotherapy. Melatonin has anti-tumor activity via several mechanisms including its anti-proliferative and pro-apoptotic effects as well as its potent pro-oxidant action in tumor cells. Therefore, melatonin may be useful for the treatment of tumors in association with chemotherapy drugs. Here, we studied the effect and mechanism of melatonin on HeLa cells apoptosis under cisplatin (CIS) treatment, particularly focusing on the caspase-9-related apoptosis pathway and mitophagy-mediated anti-apoptotic mechanism. The result indicated that co-stimulation of HeLa cells with CIS in the presence of melatonin further increased cellular apoptosis. Furthermore, concomitant treatments with melatonin and CIS significantly enhanced the mitochondrial structure and function damage, substantially augmented the caspase-9-dependent mitochondrial apoptosis with evidenced by lower mitochondria membrane potential, higher mitochondria ROS, and more pro-apoptotic proteins compared to the treatment with CIS alone. Mechanistically, melatonin inactivated mitophagy via blockade of JNK/Parkin, leading to the inhibition of anti-apoptotic mitophagy. The mitophagy had the ability to clear and remove damaged mitochondria, impairing CIS-mediated mitochondrial apoptosis. Activation of JNK/Parkin could alleviate the lethal effect of melatonin on HeLa cells. In summary, this study confirmed that melatonin sensitizes human cervical cancer HeLa cells to CIS-induced apoptosis through inhibition of JNK/Parkin/mitophagy pathways.  相似文献   

19.
In addition to marked seasonal changes in reproductive, metabolic, and other physiological functions, many vertebrate species undergo seasonal changes in immune function. Despite growing evidence that photoperiod mediates seasonal changes in immune function, little is known regarding the neuroendocrine mechanisms underlying these changes. Increased immunity in short days is hypothesized to be due to the increase in the duration of nightly melatonin secretion, and recent studies indicate that melatonin acts directly on immune cells to enhance immune parameters. The present study examined the contribution of melatonin receptors in mediating the enhancement of splenocyte proliferation in response to the T cell mitogen Concanavalin A in mice. The administration of luzindole, a high-affinity melatonin receptor antagonist, either in vitro or in vivo significantly attenuated the ability of in vitro melatonin to enhance splenic lymphocyte proliferation during the day or night. In the absence of melatonin or luzindole, splenocyte proliferation was intrinsically higher during the night than during the day. In the absence of melatonin administration, luzindole reduced the ability of spleen cells to proliferate during the night, when endogenous melatonin concentrations are naturally high. This effect was not observed during the day, when melatonin concentrations are low. Taken together, these results suggest that melatonin enhancement of splenocyte proliferation is mediated directly by melatonin receptors on splenocytes and that there is diurnal variation in splenocyte proliferation in mice that is also mediated by splenic melatonin receptors.  相似文献   

20.
It has been reported that melatonin produces either progonadal or antigonadal effects in mammals, depending on the time and mode of administration. Information on the melatonin-effect on the testis in toads indicated varied changes during the breeding and hibernating seasons. The present study in Rana hexadactyla (Lesson), a continuous breeder revealed that administration of melatonin at a dosage of 50 micrograms/frog/day either in the morning or evening for a week inhibited spermatogenesis; however, when melatonin was administered for a longer period, this inhibitory effect was lost. Moreover, treatment with melatonin both in the morning and evening had no net effect on the testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号