首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is described for the isolation of enriched populations of crypt cells from the murine small intestine. The method was developed to study the response of cells to various stimuli in vitro. The properties of the isolated cell preparations varied with the state of the intestinal mucosa of the mice from which they were isolated. Thus we could distinguish between cells from lactating and non-lactating mice. Polyamines, which are putative modulators of crypt cell division, failed to stimulate [3H]TdR incorporation in vitro. Lymphocyte culture supernatants suppressed [3H]TdR incorporation at dilutions of 1:4 to 1:64. Supernatants of 12-O-tetradecanoylphorbol-13-acetate-stimulated EL-4 cells and of mixed lymphocyte cultures failed to stimulate [3H]TdR incorporation of any dilution. Supernatants of concanavalin A-stimulated spleen cells gave less suppression of [3H]TdR incorporation than those of unstimulated spleen cells and stimulated incorporation at dilutions of 1:64 and 1:128. Phytohaemagglutinin stimulated [3H]TdR incorporation at high concentrations, whereas concanavalin A (con A) had no effect. This study shows that the isolated murine crypt cells may have the potential to provide a useful in vitro model for crypt cell responses to stimuli.  相似文献   

2.
Earlier studies from this laboratory suggested that embryonic chick bones in organ culture released into the culture medium a specific inhibitor of bone cell proliferation as defined by inhibition of [3H]TdR incorporation into DNA. Dialysis and membrane ultrafiltration experiments suggested that the inhibitory substance (IS) had a molecular weight between 6000 and 14,000. However, subsequent studies on the purification of IS have revealed that the inhibitory activity in bone-conditioned medium is of lower molecular weight and has several properties in common with thymidine (TdR): (1) IS coeluted with [3H]TdR upon gel filtration chromatography on Sephadex G-10. (2) IS bound to charcoal but not to cation or anion exchange resins. (3) Bone-conditioned medium decreased incorporation of [3H]TdR into the free [3H]TdR pool of cells in monolayer culture. (4) Conditioned medium inhibited [3H]TdR incorporation into [3H]thymidine monophosphate in a reaction catalyzed by thymidine kinase. The equivalent concentration of TdR in conditioned medium as estimated by thymidine kinase assay was sufficient to account for the reduction in [3H]TdR incorporation into bone cell DNA. No evidence was found for a specific inhibitor of bone cell proliferation other than TdR. Hence we conclude that the inhibitory effect of IS is due to dilution of [3H]TdR by nonradioactive TdR. Furthermore, media conditioned by several tumor cell lines also contained a low-molecular-weight component which inhibited [3H]TdR incorporation. The results suggest that organ- and cell-conditioned media can contain significant concentrations of TdR which can artifactually inhibit [3H]TdR incorporation in cell proliferation assays.  相似文献   

3.
Bovine aortic endothelial cells (BAEC) in culture have the ability to regulate their own proliferation. We have found that a fraction below 100,000 daltons obtained from the media of confluent cultures of BAEC inhibits tritiated thymidine [3H]TdR incorporation as well as their proliferation. The inhibition is dose- and time-dependent; maximum inhibition of [3H]TdR incorporation occurs 8 hr after cells are released from synchronization and the inhibitory fraction is added. Inhibition is evident at concentrations as low as 50 micrograms/ml and reaches a maximum at 600 micrograms/ml. The blockage of [3H]TdR incorporation is reflected in the inhibition of cell proliferation. In the presence of 400 micrograms of endogenous inhibitor per ml of media, added at the time of plating, the average population doubling time increases from 19 to 41 hr. These findings indicate that, in culture, BAEC can regulate their own proliferation by synthesizing an endogenous inhibitor(s) of proliferation.  相似文献   

4.
Bovine aortic endothelial cells (BAEC) in culture have the ability to regulate their own proliferation. We have found that a fraction below 100,000 daltons obtained from the media of confluent cultures of BAEC inhibits tritiated thymidine [3H]TdR incorporation as well as their proliferation. the inhibition is dose- and time-dependent; maximum inhibition of [3H]TdR incorporation occurs 8 hr after cells are released from synchronization and the inhibitory fraction is added. Inhibition is evident at concentrations as low as 50 μg/ml and reaches a maximum at 600 μg/ml. the blockage of [3H]TdR incorporation is reflected in the inhibition of cell proliferation. In the presence of 400 μg of endogenous inhibitor per ml of media, added at the time of plating, the average population doubling time increases from 19 to 41 hr. These findings indicate that, in culture, BAEC can regulate their own proliferation by synthesizing an endogenous inhibitor(s) of proliferation.  相似文献   

5.
Keyhole limpet hemocyanin (KLH)-primed lymph node cell (LNC) populations were incubated with various amounts of KLH and the cellular incorporation of tritiated thymidine ([3H]TdR) or tritiated N6, O2′ dibutyryl cyclic AMP ([3H]DbcAMP) was determined. T LNC responded more vigorously than did complement receptor lymphocytes (CRL), i.e., B cells, at all KLH concentrations, during all time intervals examined, and in the presence or absence of normal rabbit serum (NRS). The depletion of adherent cells from KLH-primed LNC resulted in no significant decrease in KLH-induced incorporation of either [3H]TdR or [3H]DbcAMP in any of the LNC populations. Thus it appeared that variation among LNC populations in the incidence of macrophages did not account for the marked variation in their responses. Cultures containing equal numbers of T and CRL were induced to incorporate more [3H]TdR or [3H]DbcAMP than either population cultured separately or the sum of their individual responses. It was concluded that KLH-induced incorporation of these substances into primed, isolated LNC, was primarily manifested in the T-cell population. The synergism seen in cultures containing mixtures of T and CRL suggested that B cells are induced to incorporate [3H]TdR or [3H]DbcAMP in the presence of antigen and T-cell product(s). KLH-induced incorporation of [3H]TdR into KLH-primed LNC was inhibited by cholera enterotoxin (CT) and DbcAMP as previously reported. However, CT or DbcAMP inhibited this incorporation into T LNC to a greater extent than into CRL or unfractionated LNC.  相似文献   

6.
We compared three techniques, the MTT tetrazolium assay, cell counting, and tritiated thymidine ([3H]TdR) incorporation assay to measure the antiproliferative effect of cyclosporin A (CsA) and interferon-γ (IFN-γ) on normal human skin keratinocyte cultures (NHK) used at the second passage and human papillomavirus type 16- and 18-transformed cell lines (EK16 and EK18) exposed continuously to the drugs for 3 days. The three techniques showed that under CsA (0.5 and 8 μ/ml) and IFN-γ (5 and 160 U/ml) treatments the cells remained viable and that the growth of keratinocytes was inhibited. For IFN-γ, the MTT colorimetric assay consistently underestimated its growth inhibitory activity as compared to cell counting or [3H]TdR incorporation, whatever the cells used. For high doses of CsA, MTT and cell counting gave similar percentages of inhibitory activity whatever the cells; MTT underestimated this activity as compared to [3H]TdR incorporation only in NHK and EK18 cells, whereas similar results were obtained with EK16 cells. In conclusion, this investigation shows that MTT sensitivity differed with the drug and also according to the keratinocyte cultures. The MTT test is clearly not appropriate for study of IFN-γ treatment whatever the keratinocytes used. Such discrepancies indicate that the MTT test should be done with care on cultures to measure the effects of drugs on cell growth; the growth inhibition should be carefully considered and it would be best if two different methods were used.  相似文献   

7.
Populations of G1 phase 3T3 and SV40 3T3 mouse fibroblasts have been isolated from exponentially growing cultures by the technique of centrifugal elutriation. Return of the G1 phase cells to growth conditions results in their synchronous passage through the cell cycle, as determined from monitoring of cell number, [3H]thymidine ([3H]TdR) incorporation and fraction of [3H]TdR labeled nuclei. The durations of G1, S and G2 phases are consistent with values obtained by previous investigators using conventional induction techniques for synchronization. The method for isolation of the G1 phase cells is rapid, the yield is high and the process does not appear to alter the temporal aspects of the cell cycle in either cell type.  相似文献   

8.
We describe a reproducible method for combining tritiated thymidine ([H]TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues. The technique has been used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of [3H]TdR by a simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The significance that this inhibition has on prolongation of autoradiograph exposure times, to ensure that all cells that incorporate [3H]TdR are scored as positive, in particular the most lightly labelled cells, has been quantified. The inhibition of uptake into DNA of [3H]TdR from 0.23 to 1.85 MBq (6.25 to 50 mu Ci) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in mu Ci per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of [3H]TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count.  相似文献   

9.
Abstract. A method is described for the isolation of enriched populations of crypt cells from the murine small intestine. The method was developed to study the response of cells to various stimuli in vitro . The properties of the isolated cell preparations varied with the state of the intestinal mucosa of the mice from which they were isolated. Thus we could distinguish between cells from lactating and non-lactating mice. Polyamines, which are putative modulators of crypt cell division, failed to stimulate [3H]TdR incorporation in vitro . Lymphocyte culture supernatants suppressed [3H]TdR incorporation at dilutions of 1:4 to 1:64. Supernatants of 12- O -tetradecanoylphorbol-13-acetate-stimulated EL-4 cells and of mixed lymphocyte cultures failed to stimulate [3H]TdR incorporation of any dilution. Supernatants of concanavalin A-stimulated spleen cells gave less suppression of [3H]TdR incorporation than those of unstimulated spleen cells and stimulated incorporation at dilutions of 1:64 and 1:128. Phytohaemagglutinin stimulated [3H]TdR incorporation at high concentrations, whereas concanavalin A (con A) had no effect. This study shows that the isolated murine crypt cells may have the potential to provide a useful in vitro model for crypt cell responses to stimuli.  相似文献   

10.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

11.
The modulation of proliferation and differentiation in primary epidermal keratinocyte cultures by lowered gas phase oxygen tensions was studied. Neonatal mouse epidermal keratinocyte cultures were grown in an Heraeus type B 5060 EK/O2 incubator in oxygen tensions between 5% and 15% (within the physiologic range); the oxygen tension of ambient air being 21%. Cell morphology was studied using histochemical stains and electron microscopy. Differentiation was assessed using autoradiography of SDS PAGE gels of six serially extracted cell protein fractions with [3H]leucine as a marker. Autoradiographs using [14C]glucosamine and 32Pi as markers were also assessed as a measure of other cell functions. Proliferation was studied using autoradiography of [3H]thymidine ([3H]TdR) pulse-labeled cultures and [3H]TdR incorporation into isolated DNA fractions. The results of these studies showed that lowering the oxygen tension in the gas phase reversibly inhibited cell proliferation. There was a direct arithmetic relationship between the proliferative rate of the cultures and the oxygen tension. No change in differentiation as defined by [3H]leucine indexing of protein synthesis was seen. Other markers of cell function, such as [14C]glucosamine glycosylation and [32P] phosphorylation of proteins were also unchanged. These results suggest that oxygen tension regulates only proliferation in epidermal keratinocytes. This epidermal response is well adapted to its role in the healing wound, and is an example of a tissue-specific modification of a regulatory function.  相似文献   

12.
Experiments were conducted to determine whether production of heterotrophic bacterioplankton in a small meso-eutrophic lake was influenced by the dissolved inorganic phosphorus (DIP) supply. DIP may indirectly limit bacterial production by limiting phytoplankton, which in turn may limit the carbon available to bacteria. Direct DIP limitation of bacteria occurs where the availability of DIP for bacteria is insufficient to maintain growth. This work examined direct DIP limitation of bacteria by removing phytoplankton and incubating flasks with or without added P in the dark. Bacterial production was measured via the rate of incorporation of [3H]thymidine ([3H]TdR) into DNA. Bacterial abundance was followed with epifluorescent direct counts. Rates of [3H]TdR incorporation were significantly greater in flasks with added DIP, and changes in cell abundances generally paralleled increases in [3H]TdR incorporation. Even very small additions of P (0.05 μM) were sufficient to stimulate production. DIP addition to whole lakewater also stimulated [3H]TdR incorporation relative to that in zero-addition controls, but there was not a concurrent increase in bacterial cell numbers. The stimulation of [3H]TdR incorporation after DIP addition to whole lakewater was significantly less than the stimulation due to DIP addition to 1-μm-pore-size-filtered lakewater. In this study, addition of DIP caused as much as an eightfold stimulation of [3H]TdR incorporation.  相似文献   

13.
We studied the effect of solar radiation on the incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) and [(sup14)C]leucine ([(sup14)C]Leu) by bacterioplankton in a high mountain lake and the northern Adriatic Sea. After short-term exposure (3 to 4 h) of natural bacterial assemblages to sunlight just beneath the surface, the rates of incorporation of [(sup3)H]TdR and [(sup14)C]Leu were reduced at both sites by up to (symbl)70% compared to those for the dark control. Within the solar UV radiation (290 to 400 nm), the inhibition was caused exclusively by UV-A radiation (320 to 400 nm). However, photosynthetically active radiation (PAR) (400 to 700 nm) contributed almost equally to this effect. Experiments with samples from the high mountain lake showed that at a depth of 2.5 m, the inhibition was caused almost exclusively by UV-A radiation. At a depth of 8.5 m, where chlorophyll a concentrations were higher than those in the upper water column, the rates of incorporation of [(sup3)H]TdR were higher in those samples exposed to full sunlight or to UV-A plus PAR than in the dark control. In laboratory experiments with artificial UV light, the incorporation of [(sup3)H]TdR and [(sup14)C]Leu by mixed bacterial lake cultures was also inhibited mainly by UV-A. In contrast, in the presence of the green alga Chlamydomonas geitleri at a chlorophyll a concentration of 2.5 (mu)g liter(sup-1), inhibition by UV radiation was significantly reduced. These results suggest that there may be complex interactions among UV radiation, heterotrophic bacteria, and phytoplankton and their release of extracellular organic carbon. Our findings indicate that the wavelengths which caused the strongest inhibition of TdR and Leu incorporation by bacterioplankton in the water column were in the UV-A range. However, it may be premature to extrapolate this effect to estimates of bacterial production before more precise information on how solar radiation affects the transport of TdR and Leu into the cell is obtained.  相似文献   

14.
Continuous exposure of chicken embryo limb bud mesenchyme cells undergoing chondrogenesis in vitro to [3H] thymidine thymidine [(3H]TdR) revealed that more than 90% of the cells synthesized DNA at least once during 120 h of culture. When cells were exposed to [3H]TdR for 24 h beginning at various times throughout the culture period, the percentage of cells which incorporated [3H]TdR during each period was approximately 92%. However, when the period for incorporation of radioisotope was limited to two hours, the number of cells which incorporated [3H]TdR was found to decline during chondrogenesis in vitro. This decline was coincident with the appearance of extracellular matrix material and occurred in those cells which had, and had not, expressed the cartilage phenotype. We conclude from these studies that (1) practically all of the cells continue to proliferate while chondrogenesis is occurring in vitro, (2) there is an increase in the length of the cell cycle during chondrogenesis in vitro, and (3) withdrawal from the cell cycle is not required for differentiation of mesenchyme into cartilage.  相似文献   

15.
The effect of human tumor necrosis factor (TNF) on early-passage HL-60 cells was studied. A transient phase of increased [3H]thymidine (TdR) incorporation was noted at 20-24 hr of exposure to TNF. This increase was disproportionate to the much slighter stimulation of the percentage of S-phase cells, which was measured by flow cytometry. Evidence for increased metabolic trapping of [3H]TdR following TNF treatment was apparent from whole cell uptake experiments. The salvage pathway enzyme TdR kinase was therefore measured and was found to be elevated comparably to [3H]TdR uptake. The mechanism of TNF regulation of TdR kinase was further investigated by a series of combination treatment experiments using other biologic factors and pharmacologic inhibitors of various intracellular steps. The response to TNF was not potentiated or reproduced by IL-1, IL-2, IL-3, IL-4, G-CSF, M-CSF, GM-CSF or alpha- or gamma-interferon. Blockers of early signal transduction steps, including H7, W7, sphingosine, and pertussis toxin, failed to inhibit TNF stimulation of [3H]TdR incorporation. mRNA synthesis inhibition with alpha-amanitin blocked this TNF effect, as did cAMP but not cGMP analogues. A sensitizing effect was noted with amiloride or cytochalasin B, characterized by greater relative increases of [3H]TdR incorporation and TdR kinase activity in response to TNF. In the presence of cytochalasin B, TNF treatment resulted in no change or slight decreases in the percentage of S-phase cells. Regulation of TdR kinase could thereby be dissociated from the usual cell cycle control. This study thus documents a unique example of stimulation of thymidine salvage pathway metabolism by a biologic factor, dissociable from overall cell cycle regulation.  相似文献   

16.
Acridine orange direct counts and incorporation of [3H]thymidine ([3H]TdR) were used to determine the effectiveness of an antibiotic treatment on reducing bacterial activity in oyster tissue. Cell counts, as well as total [3H]TdR incorporation into the acid insoluble pool, were significantly lower in antibiotically treated oyster tissue homogenates than in untreated controls. However, rates of [3H]TdR incorporation were not significantly different between treatments, indicating increased metabolic activity (on a per cell basis) in the antibiotically treated bacterial population versus the control population.  相似文献   

17.
Cytosolic and Particulate Protein Kinase C has been studied in Peripheral Blood Mononuclear Cells activated with 12-O-Tetradecanoyl phorbol 13-acetate and treated with the anti-HLA Class I Monoclonal Antibody 01.65. No effects on the cellular distribution of PKC activity nor to the proliferative response has been found. In phytohemagglutinin stimulated PBMC cultures treated with MoAb 01.65 total PKC activity depletion and 3H-Thymidine incorporation inhibition has been found. In PBMC cultures activated with both PHA and TPA, the proliferative response was similar to cultures activated with PHA alone, while the PKC cellular distribution was similar to the one detected in TPA stimulated cultures. Addition of the MoAb 01.65 was ineffective on both PKC activity and 3H-Thymidine incorporation. These data indicate that anti-HLA Class I MoAb induced 3H-Thymidine incorporation inhibition may be related to low levels of PKC activity.  相似文献   

18.
Interleukin 10 (IL-10) suppressed TGF-beta synthesis in mouse bone marrow cultures. Coincidingly, IL-10 down-regulated the production of bone proteins including alkaline phosphatase (ALP), collagen and osteocalcin, and the formation of mineralized extracellular matrix. The mAb 1D11.16 which neutralizes TGF-beta 1 and TGF-beta 2, induced suppressive effects comparable to IL-10 when administered before the increase of cell proliferation in the culture. It appears that mainly TGF-beta 1 plays a role in this system since (a) TGF-beta 2 levels were undetectable in supernatants from osteogenic cultures, (b) no effect was observed when the anti-TGF-beta 2 neutralizing mAb 4C7.11 was added and (c) the suppressive effect of IL-10 could be reversed by adding exogenous TGF-beta 1. It is unlikely that TGF-beta 1 modulates osteogenic differentiation by changing the proliferative potential of marrow cells since 1D11.16 did not affect [3H]thymidine ([3H]TdR) incorporation or the number of fibroblast colony forming cells (CFU-F) which harbor the osteoprogenitor cell population. Furthermore, 1D11.16 did not alter [3H]TdR uptake by the cloned osteoprogenitor cell lines MN7 and MC3T3. Light and scanning electron microscopy showed that IL-10 and 1D11.16 induced comparable morphological changes in the marrow cultures. Control cultures contained flat adherent cells embedded in a mineralized matrix. In contrast, IL-10 and 1D11.16 treated cultures were characterized by round non-adherent cells and the absence of a mineralized matrix. In this study, the mechanism by which IL-10 suppresses the osteogenic differentiation of mouse bone marrow was identified as inhibition of TGF-beta 1 production which is essential for osteogenic commitment of bone marrow cells.  相似文献   

19.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

20.
It is known that anti-HLA Class I antibodies inhibit the proliferative response of PHA-activated T-lymphocytes. We found that plastic- or sepharose-linked anti-HLA Class I monoclonal antibody 01.65 does not inhibit either [3H]Thymidine incorporation or recruitment in the cell cycle, nor does it reduce the expression of c-myc mRNA and the membrane expression of Interleukin-2 Receptor and Transferrin Receptor. Furthermore, particulate Protein Kinase C is not affected by anchored anti-HLA Class I monoclonal antibody 01.65. We suggest that anti-HLA Class I monoclonal antibody may act through crosslinking or internalization of HLA Class I antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号