首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Single channels are observed after incorporation of native vesicles from bovine rod outer segment membranes into planar lipid bilayers. The activity of a single channel in the presence of cGMP is compared to that induced by the analog 8-bromo-cGMP and by cAMP. At +80 mV, K 0.5 is about 3 m for 8Br-cGMP, 18 m for cGMP and 740 m for cAMP. In cAMP, the amplitude of the current is smaller than in cGMP or 8Br-cGMP and depends on the filter cut-off frequency. The open/closed transition rates of the channel are slightly slower with 8Br-cGMP than with cGMP while they are 5 to 10 times faster with cAMP. Addition of Ni2+ ions to either cGMP or cAMP increases the open probability: the open/closed transition rates and amplitude of the current in cAMP are then comparable to those in cGMP. A dual effect of the addition of cAMP on the cGMPor 8Br-cGMP dependent activity previously reported (Furman, R.E., Tanaka, J.C. 1989. Biochemistry 28:2785–2788) is observed with a single channel: addition of subthreshold cAMP concentrations to cGMP (or to 8Br-cGMP) markedly increases P o; addition of cAMP concentrations higher than about 70 m progressively accelerates the kinetics and reduces the amplitude to values observed in cAMP alone. The results are discussed in relation with the model previously proposed to account for the existence of four current levels (Ildefonse, M., Bennett, N. 1991. J. Membrane Biol. 123:133–147).  相似文献   

2.
Low-voltage-activated (1-v-a) and high-voltage-activated (h-v-a) Ca2+ currents I Ca were recorded in whole-cell voltage clamped NG108-15 neuroblastoma x glioma hybrid cells. We studied the effects of arachidonic acid (AA), oleic acid, myristic acid and of the positively charged compounds tetradecyltrimethyl-ammonium (C14TMA) and sphingosine. At pulse potentials >–20 mV, AA (25-100 m) decreased 1-v-a and h-v-a I Ca equally. The decrease developed slowly and became continually stronger with increasing time of application. It was accompanied by a small negative shift and a slight flattening of the activation and inactivation curves of the 1-v-a I Ca. The shift of the activation curve manifested itself in a small increase of 1-v-a I Ca at pulse potentials <–30 mV. The effects were only partly reversible. The AA effect was not prevented by 50 m 5, 8, 11, 14-eicosatetraynoic acid, an inhibitor of the AA metabolism, and not mimicked by 0.1–1 m phorbol 12, 13-dibutyrate, an activator of protein kinase C. Probably, AA directly affects the channel protein or its lipid environment. Oleic and myristic acid acted similarly to AA but were much less effective. The positively charged compounds C14TMA and sphingosine had a different effect: They shifted the activation curve of 1-v-a I Ca in the positive direction and suppressed 1-v-a more than h-v-a I Ca; their effect reached a steady-state within 5–10 min and was readily reversible. C14TMA blocked 1-v-a I Ca with an IC50 of 4.2 m while sphingosine was less potent.  相似文献   

3.
Single channel currents were activated by GABA (0.5 to 5 m) in cell-attached and inside-out patches from cells in the dentate gyrus of rat hippocampal slices. The currents reversed at the chloride equilibrium potential and were blocked by bicuculline (100 m). Several different kinds of channel were seen: high conductance and low conductance, rectifying and nonrectifying. Channels had multiple conductance states. The open probability (P o ) of channels was greater at depolarized than at hyperpolarized potentials and the relationship between P o and potential could be fitted with a Boltzmann equation with equivalent valency (z) of 1. The combination of outward rectification and potentialdependent open probability gave very little chloride current at hyperpolarized potentials but steeply increasing current with depolarization, useful properties for a tonic inhibitory mechanism.  相似文献   

4.
Summary Using single-channel recording techniques, we have detected two types of outwardly rectifying chloride channel on epithelial cells cultured from human fetal epididymis. A small-conductance channel (2.8–5.0 pS) was spontaneously active in 29% of cell-attached patches but rapidly disappeared on patch excision. This channel often occurred in clusters and exhibited slow kinetics with open and closed times of the order of tens or hundreds of msec; an open-state probability that was essentially independent of voltage; and a very low permeability to bicarbonate relative to chloride. Exposing epididymal cells to either forskolin (3 m) or adrenaline (1 m) activated this channel (up to 350-fold), suggesting that it may be involved in cyclic AMP-mediated anion secretion by the male reproductive tract. The large-conductance channel (14 to 29 pS) was never detected in cell-attached patches but could be activated by depolarization (40 mV) in 3% of excised, inside-out patches. Once activated, opening of this large channel was voltage independent, and it had a relatively high permeability to both gluconate (P gluconate/P chloride=0.24) and bicarbonate (P bicarbonate/P chloride=0.4). The proportion of excised patches that contained this channel was increased 2.5-fold by prior stimulation of the epididymal cells; however, because the channel was never observed in cell-attached patches its physiological role must remain uncertain.  相似文献   

5.
Summary Alkalinization of the matrix side of the mitochondrial inner membrane by pH shifts from 6.8 to 8.3 caused a reversible increase in current of 3.2±0.2 pA (mean±se,n=21) at±40 mV measured using patch-clamp techniques. The current increase was reversed in a graded fashion by the addition of Mg2+ in 0.15m KCl corresponds to approximately 15 pS. Reversal potentials derived from whole patch currents indicated that the inner mitochondrial membrane was primarily cation selective at pH 6.8 with aP k/P Cl=32 (n=6). Treatment with alkaline pH (8.3) increased the current and anion permeability (P K/P Cl=16,n=6). The membrane becomes completely cation selective when low concentrations (12 m) of the drug propranolol are added. The amphiphilic drugs amiodarone (4 m), propranolol (70 m) and quinine (0.6mm) blocked almost all of the current. The pH-dependent current was also inhibited by tributyltin. These results are consistent with the presence of two pathways in the inner mitochondrial membrane. One is cation selective and generally open and the other is anion selective and induced by alkaline pH. The alkaline pH-activated channel likely corresponds to the inner membrane anion channel postulated by others from suspension studies.  相似文献   

6.
The effects of several group-specific chemical reagents were examined upon the activity of the ATP-sensitive potassium (KATP) channel in the CRI-G1 insulin-secreting cell line. Agents which interact with the sulfhydryl moiety (including 1 mM N-ethylmaleimide (NEM), 1 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DNTB) and 1 mm o-iodobenzoate) produced an irreversible inhibition of KATP channel activity when applied to the intracellular surface of excised inside-out patches. This inhibition was substantially reduced when attempts were made to eliminate Mg2+ from the intracellular compartment. ATP 50 m and 100 m tolbutamide were each shown to protect against the effects of these reagents. The membrane impermeable DNTB was significantly less effective when applied to the external surface of outside-out patches. Agents which interact with peptide terminal amine groups and amino groups of lysine [1 mm methyl acetimidate and 1 mm trinitrobenzene sulfonic acid (TNBS)] and also the guanido group of arginine (1 mm methyl glyoxal) produced a Mg2+-dependent irreversible inhibition of KATP channel activity which could be prevented by ATP but not tolbutamide. The irreversible activation of the KATP channel produced by the proteolytic enzyme trypsin was prevented only when methyl glyoxal and methyl acetimidate were used in combination to inhibit channel activity. Radioligand binding studies showed that the binding of 3H glibenclamide was unaffected by any of the above agents with the exception of TNBS which completely inhibited binding with a EC50 of 307 ±6 m.These results provide evidence for the presence of essential sulfhydryl (possibly cysteine), and basic amino acid (possibly lysine and arginine) residues associated with the normal functioning of the KATP channel. Furthermore, we believe that the sulfhydryl group in question is situated at the internal surface of the membrane, possibly near to the channel pore.K.L. is a Wellcome Prize Student. This work was supported by the Wellcome Trust, MRC and BDA.  相似文献   

7.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

8.
Summary ATP-inhibited potassium channels (K(ATP)) were studied in excised, inside-out patches from cultured adult mouse pancreatic -cells and HIT cells. In the absence of ATP, ADP opened K(ATP) channels at concentrations as low as 10 m and as high as 500 m, with maximal activation between 10 and 100 m ADP in mouse -cell membrane patches. At concentrations greater than 500 m, ADP inhibited K(ATP) channels while 10 mm virtually abolished channel activity. HIT cell channels had a similar biphasic response to ADP except that more than 1 mm ADP was required for inhibition. The channel opening effect of ADP required magnesium while channel inhibition did not. Using creatine/creatine phosphate solutions with creatine phosphokinase to fix ATP and ADP concentrations, we found substantially different K(ATP)-channel activity with solutions having the same ATP/ADP ratio but different absolute total nucleotide levels. To account for ATP-ADP competition, we propose a new model of channel-nucleotide interactions with two kinds of ADP binding sites regulating the channel. One site specifically binds MgADP and increases channel opening. The other, the previously described ATP site, binds either ATP or ADP and decreases channel opening. This model very closely fits the ADP concentration-response curve and, when incorporated into a model of -cell membrane potential, increasing ADP in the 10 and 100 m range is predicted to compete very effectively with millimolar levels of ATP to hyperpolarize -cells.The results suggest that (i) K(ATP)-channel activity is not well predicted by the ATP/ADP ratio, and (ii) ADP is a plausible regulator of K(ATP) channels even if its free cytoplasmic concentration is in the 10–100 m range as suggested by biochemical studies.We would like to thank Mr. Louis Stamps for expert technical assistance and Dr. Wil Fujimoto and Ms. Jeanette Teague for generously providing HIT cells obtained from Dr. Robert Santerre at Eli Lilly. We would also like to thank Dr. Michel Vivaudou for providing the program ALEX. Support was provided by the NIH and the Department of Veterans Affairs.  相似文献   

9.
Summary Filter paper cellulase (FPCase) and carboxymethyl cellulase (CMCase) activities ofSclerotium rolfsii were maximal at pH 4.8 and 3.6, respectively, and at 55°C. Both activities increased three-fold when the concentrations of filter paper and carboxymethylcellulose were increased by six-and five-fold, respectively. Enzyme activities decreased with increasing incubation period though sugar formation increased. The Km and Vmax values activity were 61.5 mg and 0.57 m for FPCase and 6.25 mg and 1.58 m for CMCase.
Propriétés des celluloses de Sclerotium rolfsii
Résumé Les activités cellulolytiques mesurées sur papier filtre (FPCase) et avec la carboxyméthylcellulose (CMCase) chezSclerotium rolfsii ont leur valeur maximum respectivement à pH 4.8 et 3.6, et à 55°C. Les deux activités augmentent de trois fois quand on augmente les concentrations en papier filtre et en carboxymethylcellulose de six et cinq fois respectivement. Les activités enzymatiques décroissent lorsque la période d'incubation augmente, bien que la formation de sucre croisse. Les valeurs de Km et Vmax sont de 61.5 mg et 0.57 m pour la FPCase et de 6.25 mg et 1.58 m pour la CMCase.
  相似文献   

10.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

11.
Agonists that elevate calcium in T84 cells stimulate chloride secretion by activating KBIC, an inwardly rectifying K channel in the basolateral membrane. We have studied the regulation of this channel by calcium, nucleotides and phosphorylation using patch clamp and short-circuit current (I SC) techniques. Open probability (P 0) was independent of voltage but declined spontaneously with time after excision. Rundown was slower if patches were excised into a bath solution containing ATP (10 m–5 mm), ATP (0.1 mm) + protein kinase A (PKA; 180 nm), or isobutylmethylxanthine (IBMX; 1 mm). Analysis of event durations suggested that the channel has at least two open and two closed states, and that rundown under control conditions is mainly due to prolongation of the long closed time. Channel activity was restimulated after rundown by exposure to ATP, the poorly hydrolyzable ATP analogue AMP-PNP, or ADP. Activity was further enhanced when PKA was added in the presence of MgATP, but only if free calcium concentration was elevated (400 nm). Nucleotide stimulation and inward rectification were both observed in nominally Mg-free solutions. cAMP modulation of basolateral potassium conductance in situ was confirmed by measuring currents generated by a transepithelial K gradient after permeabilization of the apical membrane using -toxin. Finally, protein kinase C (PKC) inhibited single KBIC channels when it was added directly to excised patches. These results suggest that nonhydrolytic binding of nucleotides and phosphorylation by PKA and PKC modulate the responsiveness of the inwardly rectifying K channel to Ca-mediated secretagogues.This work was supported by the Canadian Cystic Fibrosis Foundation and the Medical Research Council of Canada. J.W.H. is a Chercheur-Boursier of the Fonds de la recherche en santé du Québec.  相似文献   

12.
The G-protein-mediated coupling of a glucagon receptor to ATP-dependent K channels—KATP—has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches, KATP channel activity was inhibited by low concentrations of glucagon (IC50 = 2.4 nm); the inhibitory effect vanished at concentrations greater than 50 nm. In cell-attached patches, inhibition by bath-applied glucagon was seen most often, although stimulation was observed in a few cases. A dual action of the hormone is proposed to resolve these apparently divergent results. In excised inside-out patches, KATP channel activity was inhibited by addition of subunits purified from either erythrocyte or retina (IC50 = 50 pm and 1 nm, respectively). Subsequent exposure of the patch to i or o reversed this effect. In excised inside-out patches, increasing Mg2+ in the bath stimulated the channel activity between 0 and 0.5 mm, but blocked it at higher concentrations (IC50 = 2.55 mm). In most cases (70%), GTP had a stimulatory effect at concentrations up to 100 m. However, in three cases, similar GTP levels had clear inhibitory effects. In excised inside-out patches, cholera toxin (CTX) caused channel inhibition. Although the effect could not be reversed by removal of the toxin, the activity was restored by subsequent addition of purified i or o . These results are compatible with a model whereby channel inhibition by activated G S -coupled receptors occurs, at least in part, via association of the subunits of G S with i / o subunits and deactivation of the i / o -dependent stimulatory pathway. On the basis of this hypothesis, a model is developed to describe the effects of G proteins on the KATP channel, as well as to account for the concentration-dependent stimulation and inhibition of KATP channel by Mg2+. An interpretation of the ability of glucagon to potentiate, but not initiate, insulin release is also given in terms of this model and the effects of ATP on KATP channels.This work was supported by grant DCB-89 19368 from the National Science Foundation and a research grant (W-P 880513) from the American Diabetes Association to B.R.The authors would like to thank Dr. A.E. Boyd, III for supplying the RINm5F and HIT cells, Drs. J. Codina and L. Birnbaumer for supplying the G protein and subunits from erythrocyte, Dr. R.A. Cerione for supplying the G protein subunit from retina, and Mrs. Satoko Hagiwara for preparing and maintaining the cell cultures.  相似文献   

13.
Calcium-release channels of sheep cardiac sarcoplasmic reticulum were incorporated into phosphatidylethanolamine bilayers and single channel currents were recorded under voltage-clamp conditions. The effect of adenosine on single channel conductance and gating was investigated, as were the interactions between adenosine and caffeine and adenosine and ,-methylene ATP.Addition of adenosine (0.5–5 mm) to the cytosolic but not the luminal side of the membrane increased the open probability of single calcium-activated calcium-release channels by increasing the frequency and duration of open events, yielding an EC50 of 0.75 mm at 10 m activating Ca2+.Addition of 1 mm caffeine potentiated the effects of adenosine at 10 or 100 m-activating cytosolic calcium, but had no effect on the inability of adenosine to activate the channel at 80 pmcalcium, suggesting discrete sites of action on the calcium-release channel for adenosine and caffeine. In contrast, addition of 100 m ,-methylene-ATP decreased single channel open probability in the presence of adenosine, suggesting that these compounds act on the same site on the channel.Activation of single channel opening by adenosine, or by adenosine together with caffeine, had no effect on single channel conductance or the Ca2+/Tris+ permeability ratio. Channels activated by adenosine were characteristically modified by ryanodine and blocked by m ruthenium red or mm magnesium.These results show that adenosine activates the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by increasing the frequency and duration of open events in a Ca2+-dependent manner. The receptor site on the channel for adenosine is distinct from that for caffeine but probably the same as that for adenine nucleotides.This work was supported by the British Heart Foundation.  相似文献   

14.
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K d ) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation.  相似文献   

15.
A kinetic study of the -glucosidase-catalysed reaction of a commercial cellulase preparation from Trichoderma viride is described. The K m and V max values of the -glucosidase system were: (a) 0.5 mm and 6.6 mol/min, respectively, using p-nitrophenyl -d-glucopyranoside (pNPG) as substrate; and (b) 2.5 mm and 8.1 mol/min, respectively, using cellobiose as subtrate. The glucose effect on initial reaction velocity agrees with a mixed-inhibition pattern. The inhibition constant (K i) values were, 0.53 and 0.39 mm with nNPG and cellobiose as substrates, respectively. The temperature and pH optima were determined. Correspondence to: A. Romeu  相似文献   

16.
Arachidonic acid has been shown to activate K+-selective, mechanosensitive ion channels in cardiac, neuronal and smooth muscle cells. Since the cardiac G protein (G K )-gated, muscarinic K+ (KACh) channel can also be activated by arachidonic acid, we investigated whether the KACh channel was also sensitive to membrane stretch. In the absence of acetylcholine (ACh), KACh channels were not active, and negative pressure failed to activate these channels. With ACh (10 m) in the pipette, applying negative pressure (0 to –80 mm Hg) to the membrane caused a reversible, pressure-dependent increase in channel activity in cell-attached and inside-out patches (100 m GTP in bath). Membrane stretch did not alter the sensitivity of the KACh channel to GTP. When G K was maximally activated with 100 m GTPS in inside-out patches, the KACh channel activity could be further increased by negative pressure. Trypsin (0.5 mg/ ml) applied to the membrane caused activation of the KACh channel in the absence of ACh and GTP; KACh channel activity was further increased by stretch. These results indicate that the atrial muscarinic K+ channels are modulated by stretch independently of receptor/G protein, probably via a direct effect on the channel protein/ lipid bilayer.  相似文献   

17.
The influence of some ions in pre-growth culture medium on chromate reduction by resting cells of Agrobacterium radiobacter strain EPS-916 was investigated. The reduction was dependent on the Fe2+ content of the culture medium: the higher the iron content, the lower the reduction rate. The cells showed maximum chromate reduction when pre-grown in the presence of 0.243 m Mg2+, 20 m Ca2+ and 3.6 m Mn2+. Chromate reduction was not affected by the addition of MgCl2, CdCl2, ZnCl2, MnCl2, Na2SO4 (1000 m), and Na2MoO4 (100 m) to the activity assays. However, activity was inhibited by the presence of Na2SO4 (10 mm), Na2MoO4 (200 m) and ferric citrate.  相似文献   

18.
Summary Apical membrane vesicles from human term placenta were isolated using a magnesium precipitation technique, and the purity of the vesicles was assessed morphologically using scanning and transmission electron microscopy, and biochemically, using marker enzymes. The vesicles were found to be morphologically intact and significantly enriched in enzymes associated with apical membranes. 36Cl uptake into these vesicles was studied in the presence of an outwardly directed Cl gradient. This uptake was found to be time dependent, with an initial rapid uptake tending to peak between 10 and 20 min and thereafter decline. Uptake was found to be voltage dependent since 5 m valinomycin caused a decrease in uptake. The effects of N-phenylanthranilic acid (NPA) and 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS) and bumetanide on the initial rate of Cl were examined in the presence and absence of 5 m valinomycin. NPA and DIDS inhibited isotope uptake strongly with IC50 values of 0.83±0.35 m and 3.43±0.37 m, respectively, in the absence of valinomycin. Although valinomycin reduced 36Cl uptake by about 80% when added before the isotope, DIDS reduced the uptake which remained in a concentration-dependent fashion with an IC50 of 5.6±2.1 m. Under these conditions, NPA was without effect at concentrations below 100 m. Bumetanide was without effect at the concentrations used in the absence of valinomycin. However, following valinomycin pretreatment, bumetanide reduced 36Cl uptake significantly at 100 m concentration. Vesicle diameter, as assessed by flow cytometry, did not change under the conditions employed.The effects of some fatty acids were also investigated. Arachidonic acid and linoleic acid inhibited Cl uptake with IC50 values of 37.6±14.9 m and 4.59±0.51 m, respectively. Arachidonyl alcohol and elaidic acid were found to be without effect. These studies show that human placental brush border membrane vesicles possess a chloride conductance channel, the activity of which can be measured in the presence of an outwardly directed Cl gradient and this channel is sensitive to Cl channel inhibitors, especially N-phenylanthranilic acid, and can be inhibited by unsaturated fatty acids such as arachidonic acid and linoleic acid.This work was supported in part by the Cystic Fibrosis Association of Ireland and Eolas, The Irish Science and Technology Agency. The technical assistance of Mr. Cormac O' Connell in the preparation of the electron micrographs and of Mr. Roddy Monks in the flow cytometric analysis is gratefully acknowledged.  相似文献   

19.
In hippocampal neurons, 5-hydroxytryptamine (5-HT) activates an inwardly rectifying K+ current via G protein. We identified the K+ channel activated by 5-HT (K5-HT channel) and studied the effects of G protein subunits and nucleotides on the K+ channel kinetics in adult rat hippocampal neurons. In inside-out patches with 10 m 5-HT in the pipette, application of GTP (100 m) to the cytoplasmic side of the membrane activated an inwardly rectifying K+ channel with a slope conductance of 36±1 pS (symmetrical 140 mm K+) at –60 mV and a mean open time of 1.1±0.1 msec (n=5). Transducin activated the (K5-HT) channels and this was reversed by -GDP. Whether the K5-HT channel was activated endogenously (GTP, GTPS) or exogenously (), the presence of 1 mm ATP resulted in a 4-fold increase in channel activity due in large part to the prolongation of the open time duration. These effects of ATP were irreversible and not mimicked by AMPPMP, suggesting that phosphorylation might be involved. However, inhibitors of protein kinases A and C (H-7, staurosporine) and tyrosine kinase (tyrphostin 25) failed to block the effect of ATP. These results show that G activates the G protein-gated K+ channel in hippocampal neurons, and that ATP modifies the gating kinetics of the channel, resulting in increased open probability via as yet unknown pathways.  相似文献   

20.
The properties of one ATP-inhibited and one Ca2+-dependent K+ channel were investigated by the patch-clamp technique in the soma membrane of leech Retzius neurons in primary culture. Both channels rectify at negative potentials. The ATP-inhibited K+ channel with a mean conductance of 112 pS is reversibly blocked by ATP (K i = 100 m), TEA (K i =0.8 mm) and 10 mm Ba2+ and irreversibly blocked by 10 nm glibenclamide and 10 m tolbutamide. It is Ca2+ and voltage independent. Its open state probability (P o) decreases significantly when the pH at the cytoplasmic face of inside-out patches is altered from physiological to acid pH values. The Ca2+-dependent K+ channel with a mean conductance of 114 pS shows a bell-shaped Ca2+ dependence of P o with a maximum at pCa 7–8 at the cytoplasmic face of the membrane. The P o is voltage independent at the physiologically relevant V range. Ba2+ (10 mm) reduces the single channel amplitude by around 25% (ATP, TEA, glibenclamide, tolbutamide, and Ba2+ were applied to the cytoplasmic face of the membrane).We conclude that the ATP-dependent K+ channel may play a role in maintaining the membrane potential constant—independently from the energy state of the cell. The Ca2+-dependent K+ channel may play a role in generating the resting membrane potential of leech Retzius neurons as it shows maximum activity at the physiological intracellular Ca2+ concentration.This study was supported by the Deutsche Forschungsgemeinschaft (W.-R. Schlue) and by a fellowship of the Konrad-Adenauer-Stiftung (G. Frey). We thank Dr. Draeger (Hoechst AG) for the gift of glibenclamide. The data are part of a future Ph.D. thesis of G. Frey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号