首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The present study addresses the controversy of whether the reduction in energy metabolism during torpor in endotherms is strictly a physical effect of temperature (Q10) or whether it involves an additional metabolic inhibition. Basal metabolic rates (BMR; measured as oxygen consumption, ), metabolic rates during torpor, and the corresponding body temperatures (T b) in 68 mammalian and avian species were assembled from the literature (n=58) or determined in the present study (n=10). The Q10 for change in between normothermia and torpor decreased from a mean of 4.1 to 2.8 with decreasingT b from 30 to <10°C in hibernators (species that show prolonged torpor). In daily heterotherms (species that show shallow, daily torpor) the Q10 remained at a constant value of 2.2 asT b decreased. In hibernators with aT b<10°C, the Q10 was inversely related to body mass. The increase of mass-specific metabolic rate with decreasing body mass, observed during normothermia (BMR), was not observed during torpor in hibernators and the slope relating metabolic rate and mass was almost zero. In daily heterotherms, which had a smaller Q10 than the hibernators, no inverse relationship between the Q10 and body mass was observed, and consequently the metabolic rate during torpor at the sameT b was greater than that of hibernators. These findings show that the reduction in metabolism during torpor of daily heterotherms and large hibernators can be explained largely by temperature effects, whereas a metabolic inhibition in addition to temperature effects may be used by small hibernators to reduce energy expenditure during torpor.Abbreviation BMR basal metabolic rate  相似文献   

2.
Rotifer cultures of Brachionus plicatilis (SINTEF-strain, length 250 m) rich in 3 fatty acids were starved for > 5 days at variable temperature (0–18 °C). The net specific loss rate of rotifer numbers were 0.04 day–1 (range 0–0.08 day–1) at 5–18 °C, but reached values up to 0.25 day–1 at 0–3 °C. The loss rate was independent on culture density (range 40–1000 ind ml–1), but was to some extent dependent on the initial physiological state of the rotifers (i.e., egg ratio).The loss rate of lipids was 0.02–0.05 day–1 below 10 °C, where the potential growth rate of the rotifer is low (0–0.09 day–1). The loss rate of lipids increased rapidly for higher temperatures where the rotifer can maintain positive growth, and reached 0.19 day–1 at 18 °C. The Q10 for the lipid loss rate versus temperature was higher than the Q10 for respiration found in other strains. This may suggest that other processes than respiration were involved in lipid catabolism. The content of 3 fatty acids became reduced somewhat faster than the lipids (i.e. in particular 22:6 3), but the fatty acid per cent distribution remained remarkably unaffected by the temperature during starvation.The results showed that rotifer cultures could be starved for up to 4 days at 5–8 °C without essential quantitative losses of lipids, 3 fatty acids, and rotifers. The rotifers exhausted their endogenous lipids through reproduction (anabolism) and respiration (including enhanced locomotion) at higher temperatures. At lower temperatures, the mortality rate became very high.  相似文献   

3.
Divalent cation (Mn2+, Ca2+) entry into rat parotid acinar cells is stimulated by the release of Ca2+ from the internal agonist-sensitive Ca2+ pool via a mechanism which is not yet defined. This study examines the effect of temperature on Mn2+ influx into internal Ca2+ pool-depleted acini (depl-acini, as a result of carbachol stimulation of acini in a Ca2+-free medium for 10 min) and passive 45Ca2+ influx in basolateral membrane vesicles (BLMV). Mn2+ entry into deplacini was decreased when the incubation temperature was lowered from 37 to 4°C. At 4°C, Mn2+ entry appeared to be inactivated since it was not increased by raising extracellular [Mn2+] from 50 m up to 1 mm. The Arrhenius plot of depletion-activated Mn2+ entry between 37 and 8°C was nonlinear, with a change in the slope at about 21°C. The activation energy (Ea) increased from 10 kcal/mol (Q10=1.7) at 21–37°C to 25 kcal/mol (Q10=3.0) at 21-8°C. Under the same conditions, Mn2+ entry into basal (unstimulated) cells and ionomycin (5 m) permeabilized depl-acini exhibit a linear decrease, with E a of 7.8 kcal/mol (Q10=1.5) and 6.2 kcal/mol (Q10 < 1.5), respectively. These data suggest that depletion-activated Mn2+ entry into parotid acini is regulated by a mechanism which is strongly temperature dependent and distinct from Mn2+ entry into unstimulated acini.As in intact acini, Ca2+ influx into BLMV was decreased (by 40%) when the temperature of the reaction medium was lowered from 37 to 4°C. Kinetic analysis of the initial rates of Ca2+ influx in BLMV at 37°C demonstrated the presence of two Ca2+ influx components: a saturable component, with K Ca =279 ± 43 m, Vmax = 3.38 ± 0.4 nmol Ca2+/mg protein/min, and an apparently unsaturable component. At 4°C, there was no significant change in the affinity of the saturable component, but Vmax decreased by 61% to 1.3 ± 0.4 nmol Ca2+/mg protein/min. There was no detectable change in the unsaturable component. When BLMV were treated with DCCD (5 mm) or trypsin (1100, enzyme to membrane) for 30 min at 37°C there was a 40% decrease in Ca2+ influx. When BLMV were treated with DCCD or trypsin at 4°C and subsequently assayed for Ca2+ uptake at 37°C there was no significant loss of Ca2+ influx. These data suggest that the temperature sensitive high affinity Ca2+ flux component in BLMV is mediated by a protein which undergoes a modification at low temperatures, resulting in decreased Ca2+ transport.We thank Dr. Bruce Baum, Dr. Yukiharu Hiramatsu, Dr. Ofer Eidelman, and our other colleagues for their support during this work.  相似文献   

4.
The physiological ecology of Mytilus californianus Conrad   总被引:5,自引:0,他引:5  
Summary The rates of oxygen consumption, filtration and ammonia excretion by Mytilus californianus have been related to body size and to ration. The rate of oxygen consumption (VO2) by individuals while immersed, measured on the shore, resembled rates recorded for mussels starved in the laboratory. VO2 by M. californianus was relatively independent of change in temperature, with a Q 10 (13–22° C) of 1.20. In contrast, the frequency of heart beat was more completely temperature dependent [Q 10 (13–22° C)=2.10]. Filtration rate showed intermediate dependence on temperature change [Q 10 (13–22° C)=1.49] up to 22° C, but declined at 26° C. Both VO2 and filtration rate declined during starvation. The utilisation efficiency for oxygen was low (approx. 4%) between 13 and 22° C, but increased to 10% at 26° C. Three components of the routine rate of oxygen consumption are recognised and estimated; viz. a basal rate (0.136 ml O2 h-1 for a mussel of 1 g dry flesh weight), a physiological cost of feeding (which represented about 6% of the calories in the ingested ration), and a mechanical cost of feeding which was three times higher than the physiological cost. The ratio oxygen consumed to ammonia-nitrogen excreted was low, and it declined during starvation. These data are compared with previously published measurements on Mytilus edulis, and the two species of mussel are shown to be similar in some of their physiological characteristics, though possibly differing in their capacities to compensate for change in temperature. For M. californianus, the scope for growth was highest at 17–22° C and declined at 26° C; it is suggested that exposure to temperatures in excess of 22° C, as for example during low tides in the summer, might result in a cumulative stress on these populations of mussels by imposing a metabolic deficit which must be recovered at each subsequent high tide. The high mechanical cost of feeding imposes a more general constraint on the scope for activity of the species.  相似文献   

5.
Effects of temperature on properties of flight neurons in the locust   总被引:1,自引:0,他引:1  
High ambient temperatures increase the wing-beat frequency in flying locusts, Locusta migratoria. We investigated parameters of circuit and cellular properties of flight motoneurons at temperatures permissive for flight (20–40 °C). As the thoracic temperature increased motoneuronal conduction velocity increased from an average of 4.40 m/s at 25 °C to 6.73 m/s at 35 °C, and the membrane time constant decreased from 11.45 ms to 7.52 ms. These property changes may increase locust wing-beat frequency by affecting the temporal summation of inputs to flight neurons in the central circuitry. Increases in thoracic temperature from 25–35 °C also resulted in a hyperpolarization of the resting membrane potentials of flight motoneurons from an average of-41.1 mV to -47.5 mV, and a decrease of input resistances from an average of 3.45 M to 2.00 M. Temperature affected the measured input resistance both by affecting membrane properties, and by altering synaptic input. We suggest that the increase in conduction velocity Q10=1.53) and the decrease of membrane time constant (Q10=0.62) would more than account for the wing-beat frequency increase (Q10=1.15). Hyperpolarization of the resting membrane potential (Q10=1.18) and reduction in input resistance (Q10=0.54) may be involved in automatic compensation of temperature effects.Abbreviations ANOVA analysis of variance - CPG central pattern generator - DL dorsal longitudinal muscles - EMG electromyographic - MN motoneuron - PSP post synaptic potential - Q10 temperature coefficient - RMP resting membrane potential - S.D. standard deviation - SR stretch receptor  相似文献   

6.
Summary A new assay for membrane fusion, using the fluorescent probe pyrene-sulphonyl-phosphatidyl ethanolamine, has been developed. Fusion between the envelope of Sendai virus and human erythrocytes or Lettre cells has a Q10 of 4 at 37° C, increasing to 7 at 7 ° C; there is no lag to onset of fusion. Viral neuraminidase has a Q10 of 2.3 between 37° C and 4° C. Its action limits the extent of fusion by causing the elution of virus; this effect is particularly marked at low temperature because of the difference in Q10 for fusion and neuraminidase. The temperature-dependence of the initiation of permeability changes following the removal of inhibitory amounts of Ca2+ is 2; thus membrane fusion is the principal temperature-sensitive step during the permeabilization of cells by Sendai virus. A recovery process, by which cells become insensitive to the removal of Ca2+ and which therefore limits the extent of permeabilization, has a Q10 of 7.4 between 37° C and 21° C. It is concluded that the lag to onset of permeability changes is not due to a lag in virus-cell membrane fusion, but to the gradual acquisition of a threshold level of membrane damage; the extent of permeabilization depends on the rate of fusion relative to the rates of neuraminidase and recovery.  相似文献   

7.
Summary Instantaneous oxygen consumption, muscle potential frequency, thoracic and ambient temperature were simultaneously measured during heating in individual workers and drones of honey bees. Relationships between these parameters and effects of thoracic temperature on power input and temperature elevation were studied. Oxygen consumption increased above basal levels only when flight muscles became active. Increasing muscle potential frequencies correlated with elevated oxygen consumption and raised thoracic temperature. The difference between thoracic and ambient temperature and oxygen consumption were linearly related. Oxygen consumption per muscle potential (l O2 · g –1 thorax · MP–1) was two-fold higher in drones than in workers. However, oxygen consumption for heating the thorax (l O2 · g –1 thorax · (Tth-Ta) · °C–1) was nearly the same in workers and drones. Thoracic temperature affected the amount of oxygen consumed per muscle potential (R10=1.5). Achieved temperature elevation per 100 MP was more temperature sensitive in drones (R10=6–10) than in workers (R10=3.6). Q10 values for oxygen consumption were 3 in workers and 4.5–6 in drones. Muscle potential frequency decreased with a Q10=1.8 in workers and 2.7 in drones. Heating behaviour of workers and drones was different. Drones generated heat less continuously than workers, and showed greater interindividual variability in predilection to heat. However, the maximal difference between ambient and thoracic temperature observed was 22 °C in drones and 14 °C in workers, indicating greater potential for drones.Abbreviations DL dorsal-longitudinal muscle - DV dorsoventral muscle - MP muscle potential - T a ambient temperature - T th thoracic temperature  相似文献   

8.
Direct electrometry was used to study the light-induced voltage changes in the Rhodobacter sphaeroides chromatophores adsorbed to a phospholipid-impregnated nitrocellulose film. After the second laser flash, a fast increase in the voltage associated with charge separation was followed by a slower increase attributed to the proton uptake in the QB site of the photosynthetic reaction centers. Kinetics and relative amplitudes of these voltage changes attributed to the QA –. B –. QAQBH2 transition, were measured as a function of pH and temperature between +4 and +40 °C. The kinetics can be approximated by a single exponent above +23 °C (100 µs at +25 °C, pH 7.2), whereas below this temperature, it was a good fit of two exponential approximation (65 µs and 360 µs with similar contributions at +10 °C, pH 7.2). The faster component diminished with an apparent pK 8.5, whereas the slower one was maintained at a constant level until pH 9.5 and then decreased. The calculated activation energy from the temperature dependence of the slower component (55 – 65 kJ/mol) was much higher than that of the faster component (< 10 kJ/mol). The two voltage components can be attributed to the transfer of the first (faster component) and the second (slower component) proton from the reaction center surface to QB. We suggested that higher activation energy of the slower component was due to a conformational change in the reaction center kinetically coupled to the second proton transfer to QBH.The faster component diminished in the presence of 1 M KCl, with an apparent pK 7.5. To explain this observation, we assume that: (i) the midpoint potential of the QA/QA –. redox pair was higher in 1 M KCl because of the reduced surface potential of chromatophores; (ii) the midpoint potential of the QB –./QBH–. redox pair was insensitive to the surface potential change; (iii) the equilibrium constant of the reaction QA –.QB –. QAQBH decreased at high ionic strength.  相似文献   

9.
The oxygen consumption rate (OCR) is a cumulative index of metabolic losses during aerobic metabolism. The generalized relationship of oxygen consumption rate (R, n1 O2 ind–1 h–1) and dry body mass (M, µg) for rotifers is described by the equation: R = 9.15M0.716. The level of rotifer metabolism is slightly lower than that of multicellular poikilothermic animals. Differences of OCR values in ontogenesis are substantial. Embryos and senile individuals are characterized by minimal OCR values. The OCR of oviparous females in the beginning of reproduction exceeds 2–3 times OCR values of juveniles. Differences in oxygen consumption intensity (OCI) are not so essential. OCR depends on food concentration. An increase of food concentration from 1.4 to 7.0 µg dry mass m1–1 resulted in Brachionus calyciflorus in an OCR escalation of 2.5 times at 30°C, and 0.5 times at 25°C. Maximal OCR values occur at food concentration close to the saturation concentration for population growth rate. An exponential equation is adequate to describe R-t dependence for animals, long-term adapted to different constant temperatures (2 < Q10 < 3). Acclimation effects observed during sharp temperature changes are determined by peculiarities of compensation reactions in species and separate populations. The formation of a zone of relative temperature independence of OCR (Q10 1) at fluctuating temperature is observed. It is necessary to study enzymatic activities parallel to OCR and OCI measurements.  相似文献   

10.
Respiration and nitrogen mineralization rates of humus samples from 7 Scots pine stands located along a climatic transect across the European continent from the Pyrenees (42°40) to northern Sweden (66°08) were measured for 14 weeks under laboratory conditions at temperatures from 5 °C to 25 °C. The average Q10 values for the respiration rate ranged from about 1.0 at the highest temperature to more than 5 at 10 °C to 15 °C in the northernmost samples. In samples from more northern sites, respiration rates remained approximately constant during the whole incubation period; in the southern end of the transect, rates decreased over time. Respiration rate was positively correlated with incubation temperature, soil pH and CN ratio, and negatively with soil total N. Regressions using all these variables explained approximately 71% of the total variability in the respiration rate. There was no clear relation between the nitrogen mineralization rate and incubation temperature. Below 15 °C the N-mineralization rate did not respond to increasing temperature; at higher temperatures, significant increases were found for samples from some sites. A regression model including incubation temperature, pH, Ntot and CN explained 73% of the total variability in N mineralization. The estimated increase in annual soil respiration rates due to predicted global warming at the high latitudes of the Northern Hemisphere ranged from approximately 0.07×1015 to 0.13×1015 g CO2 at 2 °C and 4 °C temperature increase scenarios, respectively. Both values are greater than the current annual net carbon storage in northern forests, suggesting a switch of these ecosystems from net sinks to net sources of carbon with global warming.  相似文献   

11.
Summary Oxygen consumption at 25°C was measured continously throughout the egg stage of Leptopterna dolobrata (more than 9 months).The rate of O2-uptake (l O2/100 eggs · 1 h) is low in freshly laid eggs. Maintaining the eggs at a constant temperature of 16°C, respiration rises abruptly from the first day after oviposition and continues rising steadily for 3 days, reaching an average value of 1.4 l. Oxygen consumption persists at or near this high level during the developmental phase of prediapause, which lasts about 15 days. After some days of oscillating high and low values, respiration decreases, and from the 24th day a low level (0.3–0.4 l) is reached. If the eggs are incubated at 16°C continuously, this low diapause-level is maintained until the end of the experiments (42 weeks) and diapause is terminated in a few eggs only.A significant increase in the success of hatching is obtained by exposing the eggs to a sufficient period of chilling.24 groups of diapausing eggs were chilled at 5°C for certain periods (10, 18, 22, 26, 31, and 34 weeks) and afterwards transferred to 16°C and re-incubated. The changes of their O2-uptake at 25°C were traced throughout their chilling and successive re-incubating periods.Oxygen consumption is greatly accelerated during the cold treatment of the eggs. The low values of the diapause-level are raised progressively during the first 6 weeks of chilling. After this primary rapid increase, respiration remains at a level 5-times as high as the diapause values over a period up to the 25th week at 5°C. This is almost exactly the duration of mesodiapause (6 months).The rates of O2-uptake during the subsequent re-incubation at 16°C depend on the extent of chilling. The ability of diapause-breaking is correlated to the rates of O2-uptake, measured after setting of re-incubation. If respiration never decreases by the onset of re-incubation, diapause is terminated in most of the eggs, and the rates of O2-uptake increase as re-incubation goes on towards the emergence of the larvae (postdiapause period).A preliminary interpretation of the cold-stimulated O2-uptake in diapausing Leptopterna-eggs is given.Dedicated to Prof. Dr. H. Precht (Kiel) on the occasion of his 65th birthday  相似文献   

12.
Characteristics of thermoluminescence (TL) glow curves were studied in thylakoids (isolated from pea leaves) or in intact pea leaves after an exposure to very high light for 2 min in the TL device. The inhibition of photosynthesis was detected as decreases of oxygen evolution rates and/or of variable fluorescence.In thylakoids exposed to high light, then dark adapted for 5 min, a flash regime induced TL glow curves which can be interpreted as corresponding to special B bands since: 1) they can be fitted by a single B band (leaving a residual band at –5°C) with a lower activation energy and a shift of the peak maximum by –5 to –6°C and, 2) the pattern of oscillation of their amplitudes was normal with a period of 4 and maxima on flashes 2 and 6. During a 1 h dark adaptation, no recovery of PS II activity occurred but the shift of the peak maximum was decreased to –1 to –2°C, while the activation energy of B bands increased. It is supposed that centers which remained active after the photoinhibitory treatment were subjected to reversible and probably conformational changes.Conversely, in intact leaves exposed to high light and kept only some minutes in the dark, TL bands induced by a flash regime were composite and could be deconvoluted into a special B band peaking near 30°C and a complex band with maximum at 2–5°C. In the case of charging bands by one flash, this low temperature band was largely decreased in size after a 10 min dark adaptation period; parallely, an increase of the B band type component appeared. Whatever was the flash number, bands at 2–5°C were suppressed by a short far red illumination given during the dark adaptation period and only remained a main band a 20°C; therefore, the origin of the low temperature band was tentatively ascribed to recombinations in centers blocked in state S2QA QB 2–. In vivo, the recovery of a moderately reduced state in the PQ pool, after an illumination, would be slow and under the dependence of a poising mechanism, probably involving an electron transfer between cytosol and chloroplasts or the so-called chlororespiration process.Abbreviations Ea- activation energy - FR- far-red - MV- methylviologen - pBQ- p-benzoquinone - PQ- plastoquinone - PS II- Photosystem II - QA- primary quinone electron acceptor of PS II - QB- secondary quinone electron acceptor of PS II - TL- thermoluminescence  相似文献   

13.
Summary Frequencies of scaphognathite (ventilatory,f sc) and heart (f h) pumping, oxygen consumption ( ), and hemolymph oxygen, carbon dioxide and pH levels were measured in adult Dungeness crabs (Cancer magister) during 7–10 day periods of exposure to 7, 12, and 17°C seawater. Ventilation volume ( ) was calculated for individual animals fromf sc and a previously determined relationship between stroke volume and animal mass. increases (Q10=2.3) with temperature were associated with larger increases inf sc (Q10=3.3) and (Q10=3.5) and smaller increases inf h (Q10=1.5). The incidence of unilateral scaphognathite pumping and pausing decreased as temperature rose.Postbranchial oxygen tension was maintained in vivo but hemolymph oxygen content decreased both in vivo and in vitro as temperature rose. Postbranchial carbon dioxide tension did not change significantly but relative alkalinity was maintained as temperature rose by loss of hemolymph bicarbonate. The effects of increased ventilation volume and potential mechanisms of bicarbonate regulation are discussed.The responses of the essentially subtidalCancer magister are compared with those of subtidal, intertidal and terrestrial crabs demonstrating that the concepts of acid-base regulation developed for water and air breathing vertebrates are also applicable to water and air breathing crabs, and that intertidal crabs may exhibit transitional states.This work was supported by Grant No. A.5762 National Research Council of Canada  相似文献   

14.
Based on previous studies (Klöckner, 1976b) dealing with field investigations on breeding season, choice of substratum, growth and mortality of the sessile filter-feeding tube wormPomatoceros triqueter in Helgoland waters (southern North Sea), data from laboratory experiments on the physiological potential of the polychaete in regard to temperature are presented. Adult worms tolerated temperatures from –3° C (24 h LT 28) to 30° C (24 h LT 50) when heated or cooled in steps of 1 C° d–1; a two-week period of acclimation within 6° to 18° C did not change their tolerance. Standard oxygen consumption and regeneration of the calcareous tube were found to be dependent on temperature, body weight and food supply; acclimation periods of two weeks had no significant influence. Highly increasing metabolic rates were noted between 6° and 18° C (Q10-values up to 6) and a maximum was found between 20° and 24° C (0.32 g O2 mg–1h–1 and 10.2 g CaCO3 mg–1d–1); tube regeneration followed a nonlinear regression of y=ax–b when compared to body weight and was reduced by starving animals to less than 50% within 15 days. Filtration activity ofP. triqueter, however, was found to be highly independent of temperature from 12° to 24° C; maximum activity was 1 ml mg–1 h–1 (all data refer to fresh weight). For comparisons with the results of previous field investigations onP. triqueter some intraspecific correlations of the different parameters employed (tube sizes, fresh and dry weight) are presented as exponential functions of y=axb.  相似文献   

15.
Summary Growth of Pisidium casertanum and P. subtruncatum from the profundal of the eutrophic Lake Esrom was followed at four temperatures in the laboratory. The growth rate of both species increased with increasing temperature, but the maximum in P. casertanum was attained at 12° C, instead of at 20° C as in P. subtruncatum. The variation of Q10 of growth in relation to animal weight was of similar form in both species at higher temperatures (6–12°C) but opposite at low temperatures (2–6°C). In the latter case Q10 of P. casertanum had a peak and that of P. subtruncatum a low value at a corresponding size preceding maturity. At constant temperatures growth curves of the form y=a+bx+cx2 were obtained, where y is weight in g and x is time in days. The growth of both species under natural conditions was simulated by use of the experimental growth rate equation and natural birth periods, sizes at birth, and temperature cycles. These simulations gave a maximum life span of 2.5–3 years for P. casertanum and 3.5–4.5 years for P. subtruncatum. The latter species showed slower growth rates at the low or medium temperatures prevailing in the profundal of this lake. A comparison with growth in nature reveals that the simulation overestimated growth in case of P. casertanum.  相似文献   

16.
Summary The endogenous respiration of 14C-labelled spores of B. cereus was measured through the 14CO2 produced, and the rate expressed as Q (l CO2/hxmg). New upper limits for respiration in various conditions have been set.Dry spores had no measurable activity; Q<10–4 at room temperature and <10–3 at 35° C. For wet spores of different harvests, at 30°C, Q lay between 0.0013 to 0.067. Near 40° C, respiration showed a maximum. Thermal history has a great influence on Q. CO2 production by heat-killed spores is attributed largely to infection.Water or 10–3 m sodium phosphate buffer (pH=6.5) gave equal spore respiration, in strong NaCl it was less. Azide enhanced respiration dramatically. A temporary increase was also found with non-radioactive glucose. Exogenous respiration of spores in glucose exceeded endogenous respiration.Endogenous and exogenous respiration of vegetative forms were much larger than those of spores and were time-dependent. The ratio of minimum (endogenous, dry spores) and maximum (exogenous, wet vegetative cells) respiration was at least 3x105.  相似文献   

17.
Summary Open-system infra red gas analysis was used to measure the CO2 output throughout a year of four species of earthworm. The respiratory quotients (R.Q.s) of the four species were determined by means of a Warburg apparatus and it was found that they varied with season. In some instances R.Q.s did not fall within the expected range of 0.7 to 1.0 and the low values were attributed to calciferous gland activity and the fixation of metabolic CO2.The results from CO2 output measurements at 10°C and R.Q.s were used to calculate oxygen uptake, this varied seasonally but the mean annual values at 10°C for adult, large immature and small immature A. rosea were 64.17, 72.66 and 78.56 l O2 g-1 fresh wt h-1 respectively. Mixed size groups of L. castaneus had a mean annual oxygen consumption at 10°C of 155.83 l O2 g-1 fresh wt h-1 and equivalent values for D. rubida and O. cyaneum were 112.02 and 69.35 l O2 g-1 fresh wt h-1. The apparent relationship between a high respiratory rate per unit weight and a litter dwelling habit (e.g. L. castaneus and D. rubida) disappeared when allowance was made for the weight of gut contents. Mean annual values for oxygen uptake in l O2 g-1 gut free fresh wt h-1 at 10°C were L. castaneus (194.79), D. rubida (142.22), A. rosea (95.70) and O. cyaneum (139.28). No size specific metabolism could be demonstrated either within or between species, this is believed to be correlated with the different levels of activity shown by different species and their life stages.Rates of oxygen consumption per unit weight for A. rosea were shown to be proportional to ambient temperature. Q 10 slopes of this relation, between 6 and 15°C, were higher for large immature A. rosea (2.42) and small immatures (1.96) than for adult clitellate worms (1.42). The mean Q 10 relationship for all size classes of A. rosea was 1.93 over the same temperature range and the equivalent value for cocoons was 1.63. The relationship between the oxygen consumption rate of all size classes of A. rosea and ambient temperature was not significantly affected by acclimatisation at 5 and 10° C prior to measurements being made at 6, 10 and 15° C.  相似文献   

18.
Summary Floronia bucculenta hibernates in the egg stage; the egg sacs are deposited on the leaves of grass tussocks without any shelter. The morphogenesis of the eggs was divided into 10 arbitrarily chosen stages, in order to test the dependence of embryonic development on temperature in the laboratory. The eggs developed slowly at 23°C, 16°, 12.5°; embryogenesis stopped after 70–45 days, when prosomal appendage rudiments began to form. At 10°, 7.5°, 5°, 0° complete embryogenesis was possible until the emergence of the first complete stage. The eggs developed most rapidly at 5° (mean developmental time 203 days). The egg development was normal at 5° and 0°, when compared with the timetable of the embryogenesis of the linyphiid Bathyphantes gracilis, a species which has no egg diapause. At 7.5° and 10° the embryogenesis was strongly delayed during the median phases of development (elongation of the germ band, formation of prosomal appendages); after reversion the development was accelerated (postdiapause phase). After long exposure to low temperatures (-10° to +10°) the diapause was terminated. A temperature of 0° was optimal (minimal time of exposure 8–9 weeks). The time required for embryonic development of postdiapause eggs decreased hyperbolically with increasing temperature. In the field the median phases of embryogenesis were retarded by low ambient temperatures; diapause was terminated from late December to mid-January. The spread of hatching in spring was 7–15 days.During the diapause phase the O2-consumption of the eggs at 25° was depressed. It rose from 1.55 (in late diapause) to 4.21 ml/100 eggs·h at the onset of postdiapause, whereas O2-utilization did not change significantly at 5° (from 0.54 to 0.61 ml/100 eggs·h just after the termination of diapause).The diapause phase was not characterized by higher resistance to cold, drought, or flooding. As compared with single eggs removed from the cocoon, the silken wall of the intact egg sac did not affect the survival of postdiapause eggs exposed to-15° (LD50=28 days); it raised, however, the survival time of eggs exposed to a R.H. of 32% (at 5°) or flooding by distilled water (at 5°): from LD50=37 to 68 days at drought, from LD50=30 to 92 days at flooding.Diapause is important for synchronizing the life-cycle of F. bucculenta with the seasonal fluctuations of environment. The egg stage is highly tolerant to the extreme factors of the winter. Some implications of the relation of the studied spider to its habitat are discussed.  相似文献   

19.
Summary The impact of an acute temperature transition between 5 °C and 15 °C on energy metabolism and performance of sea raven (Hemitripterus americanus) heart was assessed. Maximal in vitro activity of hexokinase was 1.2 and 3.7 mol · min-1 · g-1 at 5 °C and 15 °C, respectively. Carnitine palmitoyl transferase and carnitine palmitoleoyl transferase activities were 0.07 mol · min-1 · g-1 at 15 °C and declined substantially at 5 °C. Oxygen consumption and power output of perfused isolated hearts offered glucose alone as a metabolic fuel decreased significantly between 15 °C and 5 °C. When palmitoleate was included in the perfusion medium, oxygen consumption and power development remained constant between 15 °C and 5 °C, suggesting that glucose alone was not an adequate metabolic fuel at low temperature. However, maximal in vitro activity of HK implied that the catalytic potential at this locus was quite capable of meeting demands of carbon flow, while the maximal in vitro activity of the carnitine acyl CoA transferases implied that fatty acid metabolism should be greatly compromised at low temperatures. In an effort to resolve the contradiction, hearts were perfused with medium containing 14C-glucose or 14C-palmitate. Rates of 14CO2 production from labelled metabolic fuels could account for only about 2% of the oxygen consumption rates. Most of the label from 14C-glucose was incorporated into the glycogen and lipid fractions and label from 14C-palmitate was incorporated into the lipid fraction. The net incorporation rates of label into intracellular pools were temperature insensitive over the range 5–15 °C. The incorporation of exogenous glucose into the lipid fraction suggests that activity of the entire glycolytic pathway was maintained over the temperature range. Thus, the relatively low rate of oxygen consumption of hearts perfused with glucose alone as an exogenous substrate cannot be attributed to a limitation of glucose catabolism. The alternative explanation is that the presence of fatty acids induces an increase in oxygen consumption, especially at 5 °C. It is speculated that this is due to alterations in Ca2+ balance.Abbreviations ATPase adenosine triphosphatase - BSA bovine serum albumin - CoA coenzyme A - C palmitoyl T carnitine palmitoyl transferase - CS citrate synthase - HK hexokinase - MO oxygen consumption - PFK phosphofructokinase - PO 2 oxygen partial pressure  相似文献   

20.
Summary Ubiquinone-10 (Q10) production was measured in batch cultures of Paracoccus denitrificans grown for 8 h at increasing oxygen concentrations (0–21 % O2 in the sparging gas). Whereas the cellular level of Q10 decreased monotonically from 1.2 to 0.5 mol/g d.w., the total yield of Q10 was maximal at 2.5 % O2 and amounted to 350 nmol (0.3 mg) per L of culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号