首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.  相似文献   

2.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

3.
4.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

5.
6.
Ionic signalling is the most ancient form of regulation of cellular functions in response to environmental challenges. Signals, mediated by Na+ fluxes and spatio-temporal fluctuations of Na+ concentration in cellular organelles and cellular compartments contribute to the most fundamental cellular processes such as membrane excitability and energy production. At the very core of ionic signalling lies the Na+-K+ ATP-driven pump (or NKA) which creates trans-plasmalemmal ion gradients that sustain ionic fluxes through ion channels and numerous Na+-dependent transporters that maintain cellular and tissue homeostasis. Here we present a brief account of the history of research into NKA, Na+ -dependent transporters and Na+ signalling.  相似文献   

7.
K+-dependent Na+/Ca2+ exchanger proteins (NCKX1-5) of the SLC24 gene family play important roles in a wide range of biological processes including but not limited to rod and cone photoreceptor vision, olfaction, enamel formation and skin pigmentation. NCKX proteins are also widely expressed throughout the brain and NCKX2 and NCKX4 knockouts in mice have specific phenotypes. Here we review our work on structure-function relationships of NCKX proteins. We discuss membrane topology, domains critical to transport function, and residues critical to cation binding and transport function, all in the context of crystal structures that were obtained for the archaeal Na+/Ca2+ exchanger NCX_Mj.  相似文献   

8.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

9.
To assess the role of Ca2+in regulation of theNa+/H+exchanger (NHE1), we used CCL-39 fibroblasts overexpressing theNa+/Ca2+exchanger (NCX1). Expression of NCX1 markedly inhibited the transient cytoplasmic Ca2+ rise andlong-lasting cytoplasmic alkalinization (60-80% inhibition) induced by -thrombin. In contrast, coexpression of NCX1 did not inhibit this alkalinization in cells expressing the NHE1 mutant withthe calmodulin (CaM)-binding domain deleted (amino acids 637-656),suggesting that the effect of NCX1 transfection involves Ca2+-CaM binding. Expression ofNCX1 only slightly inhibited platelet-derived growth factor BB-inducedalkalinization and did not affect hyperosmolarity- or phorbol12-myristate 13-acetate-induced alkalinization. Downregulation ofprotein kinase C (PKC) inhibited thrombin-induced alkalinization partially in control cells and abolished it completely inNCX1-transfected cells, suggesting that the thrombin effect is mediatedexclusively via Ca2+ and PKC. Onthe other hand, deletion mutant study revealed that PKC-dependentregulation occurs through a small cytoplasmic segment (amino aids566-595). These data suggest that a mechanism involving directCa2+-CaM binding lasts for arelatively long period after agonist stimulation, despite apparentshort-lived Ca2+ mobilization, andfurther support our previous conclusion that Ca2+- and PKC-dependent mechanismsare mediated through distinct segments of the NHE1 cytoplasmic domain.

  相似文献   

10.
A modest diet-induced increase in serum cholesterol in rabbits increases the sensitivity of the sarcolemmal Na+/K+ pump to intracellular Na+, whereas a large increase in cholesterol levels decreases the sensitivity to Na+. To examine the mechanisms, we isolated cardiac myocytes from controls and from rabbits with diet-induced increases in serum cholesterol. The myocytes were voltage clamped with the use of patch pipettes that contained osmotically balanced solutions with Na+ in a concentration of 10 mM and K+ in concentrations ([K+]pip) ranging from 0 to 140 mM. There was no effect of dietary cholesterol on electrogenic Na+/K+ current (Ip) when pipette solutions were K+ free. A modest increase in serum cholesterol caused a [K+]pip-dependent increase in Ip, whereas a large increase caused a [K+]pip-dependent decrease in Ip. Modeling suggested that pump stimulation with a modest increase in serum cholesterol can be explained by a decrease in the microscopic association constant KK describing the backward reaction E1 + 2K+ E2(K+)2, whereas pump inhibition with a large increase in serum cholesterol can be explained by an increase in KK. Because hypercholesterolemia upregulates angiotensin II receptors and because angiotensin II regulates the Na+/K+ pump in cardiac myocytes in a [K+]pip-dependent manner, we blocked angiotensin synthesis or angiotensin II receptors in vivo in cholesterol-fed rabbits. This abolished cholesterol-induced pump inhibition. Because the -isoform of protein kinase C (PKC) mediates effects of angiotensin II on the pump, we included specific PKC-blocking peptide in patch pipette filling solutions. The peptide reversed cholesterol-induced pump inhibition. partial reactions; protein kinase C; angiotensin converting enzyme inhibitors; arteriosclerosis; insulin resistance  相似文献   

11.
Site-directed mutagenesis was applied to modify phenylalanines (Phe(475)Trp, Phe(548)Tyr, and both) to generate mutants on the basis of molecular modeling of the ATP-binding domain of Na(+)/K(+)-ATPase, in order to characterize the forces that stabilize ATP in its binding pocket. Each of the mutants was examined by Raman difference spectroscopy, i.e., as a difference between the spectrum of the domain with and without bound ATP. It was shown that Phe(475) plays a key role in stabilizing ATP-binding by a stacking interaction. Phe(548) co-stabilizes ATP on the opposite site of the binding pocket and its type of interaction with ATP-binding differs from that of Phe(475).  相似文献   

12.
The aim of the present work was to study the Mg2+-Na+/K+-ATPase interaction that was proposed to lead to the formation of a stable Mg-enzyme complex during phosphorylation from ATP. Instead of Mg we used Mn, which can replace Mg as essential activator of Na+/K+-ATPase activity. The amounts of steady-state Mn bound to the enzyme were estimated at 0 degree C on the basis of the 54Mn remaining in the effluent after passing the reaction mixture through a cation exchange resin column. As a function of the MnCl2 concentration, the amount of Mn retained by the enzyme in the absence and presence of ATP showed a saturable and a linear component; the slope of the linear component was the same in both instances (0.016 nmol/mg per microM). The ATP-dependent Mn binding could be adjusted to a hyperbolic function with a Km of 0.76 microM. The ratio [ATP-dependent E-Mn]/[E-P] measured at 5 microM MnCl2 and 5 microM ATP was not different from 1.0, both in native (Mn-E2-P) as well as in a chymotrypsin treated enzyme (Mn-E1-P). When the Mn.E-P complex was allowed to react with KCl (E2-P form) or ADP (E1-P form), the enzyme was dephosphorylated and simultaneously lost the strongly bound Mn in such a way that the ratio [ATP-dependent E-Mn]/[E-P] remained 1:1. These results show the existence of strongly bound Mn ions to Na+/K+-ATPase during phosphorylation by ATP. That binding is (i) of high affinity for Mn, (ii) probably on a single site, and (iii) with a stoichiometry Mn-Pi of 1:1.  相似文献   

13.
A method is described for studying the coupling ratio of the Na+/K+ pump, i.e., the ratio of pump-mediated fluxes of Na+ and K+, in a reconstituted system. The method is based on the comparison of the pump-generated current with the rate of K+ transport. Na+/K+-ATPase from kidney is incorporated into the membrane of artificial lipid vesicles; ATPase molecules with outward-oriented ATP-binding site are activated by addition of ATP to the medium. Using oxonol VI as a potential-sensitive dye for measuring transmembrane voltage, the pump current is determined from the change of voltage with time t. In a second set of experiments, the membrane is made selectively K+-permeable by addition of valinomycin, so that the membrane voltage U is equal to the Nernst potential of K+. Under this condition, dU/dt reflects the change of intravesicular K+ concentration and thus the flux of K+. Values of the Na+/K+ coupling ratio determined in this way are close to 1.5 in the experimental range (10-75 mM) of extravesicular (cytoplasmic) Na+ concentrations.  相似文献   

14.
钠氢交换蛋白是一类存在于细胞膜表面的离子转运泵蛋白家族.它负责将细胞内H 与胞外Na 按照1:1的比例进行交换来调控细胞内pH的动态平衡,影响细胞的容积、运动、分化、凋亡和营养吸收,从而参与许多复杂的生理和病理过程.迄今为止,钠氢交换蛋白家族已发现有9个成员,各亚型间具有结构相似性和组织分布特异性.深入研究NHE的结构、功能及基因表达调控,将为人和哺乳动物的营养生理、疾病治疗提供新的思路和方法.  相似文献   

15.
16.
The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity.  相似文献   

17.
18.
The most numerous Ca2+ extrusion protein family, in terms of distinct genes, is the SLC24 gene family of Na+/Ca2+-K+ exchangers (NCKX). Five distinct gene products have been identified, mostly from specific animal excitable tissues such as neurons and smooth muscle, but also in places like skin pigment epithelium, signifying that NCKX proteins may play very specific roles, related to Ca2+ homeostasis, in these tissues. However, progress in elucidating the specific physiological roles of NCKX proteins has been slow in coming, largely because of challenges relating to isolating the activity of these proteins in their native tissues. Herein, we provide an overview of NCKX protein functional characteristics, highlighting properties that are unique and useful as distinguishing features over other Ca2+ handling mechanisms. We also present the first comprehensive review of the literature concerning physiological roles of NCKX proteins.  相似文献   

19.
The amiloride-sensitive and nonelectrogenic Na+-H+ exchange system of eucaryotic cells is currently a topic of great interest. The results of membrane transport in the presence of protons are shown to be similar in two cases: when H+ is transferred in one direction or OH- -in the opposite direction. Therefore, in principle Na+-H+ exchange can be performed by two different mechanisms: Na+/H+ antiport or Na+/OH- symport. However, the kinetic properties of these mechanisms turn out to be quite different. The present study analyses the simplest models of antiport and symport and delineates their important differences. For this purpose the Lineweaver-Burk plot presented as Na+ reverse flow entering a cell 1/JNa (or H+ leaving a cell) versus the reverse concentration of Na+ outside 1/[Na+]0 is most useful. If a series of lines with external pH as a parameter have a common point of intersection placed on the ordinate, it indicates the availability of Na+/H+ antiport. In case of Na+/OH- symport a point of intersection is shifted to the left of the ordinate axis. According to data available in the literature, Na+/H+ antiport manifests itself in dog kidney cells and in hamster lung fibroblasts. In the skeletal muscles of chicken and in rat thymus lymphocytes however, a Na+/OH- symport is apparently present.  相似文献   

20.
The most numerous Ca2+ extrusion protein family, in terms of distinct genes, is the SLC24 gene family of Na+/Ca2+-K+ exchangers (NCKX). Five distinct gene products have been identified, mostly from specific animal excitable tissues such as neurons and smooth muscle, but also in places like skin pigment epithelium, signifying that NCKX proteins may play very specific roles, related to Ca2+ homeostasis, in these tissues. However, progress in elucidating the specific physiological roles of NCKX proteins has been slow in coming, largely because of challenges relating to isolating the activity of these proteins in their native tissues. Herein, we provide an overview of NCKX protein functional characteristics, highlighting properties that are unique and useful as distinguishing features over other Ca2+ handling mechanisms. We also present the first comprehensive review of the literature concerning physiological roles of NCKX proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号