首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathway of LH-RH degradation by two subcellular fractions (a soluble fraction and a 25 000 X g particulate fraction) of rat hypothalamus, pituitary and cerebral cortex has been studied using high performance liquid chromatography and amino acid analysis to identify the breakdown products. The primary cleavage point in the Tyr5-Gly6 bond giving [1-5] LH-RH and [6-10] LH-RH. In the presence of dithiothreitol, cleavage of LH-RH also occurred at the Pro9-Gly10 bond giving [1-9] LH-RH. The fragment [1-5] LH-RH is further degraded sequentially from the C-terminus and [1-4] LH-RH, [1-3] LH-RH, tyrosine and tryptophan were identified. The other major fragment, [6-10] LH-RH, is rapidly broken down, the only intermediate product positively identified being Arg-Pro.  相似文献   

2.
Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A peptidase that cleaved neurotensin at the Pro10-Tyr11 peptide bond, leading to the formation of neurotensin-(1-10) and neurotensin-(11-13), was purified nearly to homogeneity from rat brain synaptic membranes. The enzyme appeared to be monomeric with a molecular weight of about 70,000-75,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography filtration. Isoelectrofocusing indicated a pI of 5.9-6. The purified peptidase could be classified as a neutral metallopeptidase with respect to its sensitivity to pH and metal chelators. Thiol-blocking agents and acidic and serine protease inhibitors had no effect. Studies with specific peptidase inhibitors clearly indicated that the purified enzyme was distinct from enzymes capable of cleaving neurotensin at the Pro10-Tyr11 bond such as proline endopeptidase and endopeptidase 24-11. The enzyme was also distinct from other neurotensin-degrading peptidases such as angiotensin-converting enzyme and a recently purified rat brain soluble metalloendopeptidase. The peptidase displayed a high affinity for neurotensin (Km = 2.6 microM). Studies on its specificity revealed that neurotensin-(9-13) was the shortest neurotensin partial sequence that was able to fully inhibit [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule as well as substitutions in positions 8, 9, and 11 by D-amino acids strongly decreased the inhibitory potency of neurotensin. Among 20 natural peptides, only angiotensin I and the neurotensin-related peptides (xenopsin and neuromedin N) were found as potent as unlabeled neurotensin.  相似文献   

4.
The present article describes the interaction of neurotensin with specific receptors in pure primary cultured neurons and the mechanisms by which this peptide is inactivated by these cells. Neurotensin binding sites are not detectable in nondifferentiated neurons and appear during maturation. The binding at 37 degrees C of [monoiodo-Tyr3]neurotensin to monolayers of neurons 96 h after plating is saturable and characterized by a dissociation constant of 300 pM and a maximal binding capacity of 178 fmol/mg of protein. The binding parameters as well as the specificity of these receptors toward neurotensin analogues reveal close similarities between the binding sites present in primary cultured neurons and those described in other membrane preparations or cells. Neurotensin is rapidly degraded by primary cultured neurons. The sites of primary inactivating cleavages are the Pro7-Arg8, Arg8-Arg9, and Pro10-Tyr11 bonds. Proline endopeptidase is totally responsible for the cleavage at the Pro7-Arg8 bond and contributes to the hydrolysis mainly at the Pro10-Tyr11 site. However, the latter breakdown is also generated by a neurotensin-degrading neutral metallopeptidase. The cleavage at the Arg8-Arg9 bond is due to a peptidase that can be specifically inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanyl-p- aminobenzoate. The secondary processing occurring on neurotensin degradation products are: a bestatin-sensitive aminopeptidasic conversion of neurotensin11-13 to free Tyr11, and a rapid cleavage of neurotensin8-13 by proline endopeptidase. A model for the inactivation of neurotensin in primary cultured neurons is proposed and compared to that previously described for purified rat brain synaptic membranes.  相似文献   

5.
The degradation of neurotensin and D-Tyr11 neurotensin by apparently homogeneous preparations of rabbit brain endo-oligopeptidase A and endo-oligopeptidase B (Proline-endopeptidase) was studied. Peptide fragments were isolated by high performance liquid chromatography and identified by amino acid analysis. Endo-oligopeptidase A cleaved neurotensin at the Arg8-Arg9 bond whereas D-Tyr11 neurotensin was not significantly hydrolysed. Endo-oligopeptidase B cleaved at the carboxyl side of Pro7, Pro10 in neurotensin and at Pro7 in D-Tyr11 neurotensin. The concentration dependent inhibition of neurotensin degradation by bradykinin and vice-versa represents additional evidence that endo-oligopeptidase A cleaves both Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin.  相似文献   

6.
Skidgel RA  Erdös EG 《Peptides》2004,25(3):521-525
Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes and to the very broad and beneficial therapeutic applications of ACE inhibitors.  相似文献   

7.
It was shown previously that the tridecapeptide neurotensin is inactivated by rat brain synaptic membranes and that one of the primary inactivating cleavages occurs at the Pro10-Try11 peptide bond, leading to the formation of NT1-10 and NT11-13. The present study was designed to investigate the possibility that this cleavage was catalyzed by proline endopeptidase and/or endopeptidase 24.11 (enkephalinase). Purified rat brain synaptic membranes were found to contain a N-benzyloxycarbonyl-Gly-Pro-4-methyl-coumarinyl-7-amide-hydrolyzin g activity that was markedly inhibited (93%) by the proline endopeptidase inhibitor N-benzyloxycarbonyl-Pro-Prolinal and partially blocked (25%) by an antiproline endopeptidase antiserum. In contrast, the cleavage of neurotensin at the Pro10-Tyr11 bond by synaptic membranes was not affected by N-benzyloxycarbonyl-Pro-Prolinal and the antiserum. When the conversion of NT1-10 to NT1-8 by angiotensin converting enzyme was blocked by captopril and when the processing of NT11-13 by aminopeptidase(s) was inhibited by bestatin, it was found that thiorphan, a potent endopeptidase 24.11 inhibitor, partially decreased the formation of NT1-10 and NT11-13 by synaptic membranes. In conclusion: (1) proline endopeptidase, although it is present in synaptic membranes, is not involved in the cleavage of neurotensin at the Pro10-Tyr11 bond; (2) endopeptidase 24.11 only partially contributes to this cleavage; (3) there exists in rat brain synaptic membranes a peptidase different from proline endopeptidase and endopeptidase 24.11 that is mainly responsible for inactivating neurotensin by cleaving at the Pro10-Tyr11 bond.  相似文献   

8.
The products formed from mammalian neurotensin by peptidases in two subcellular fractions from rat, mouse, dove, terrapin and goldfish brain were separated and identified using high-performance liquid chromatography. The main neurotensin metabolites were [1-8]-, [1-10]- and [1-7]-sequences; goldfish and terrapin brain fractions also produced [1-11]- and [1-12]-fragments. Avian neurotensin was cleaved by peptidases in rat and dove brain fractions to [1-8]-, [9-13]-, [1-10]- and [1-12]-fragments. Similar mechanisms of inactivation were found for both mammalian and avian neurotensins .  相似文献   

9.
To study the binding of (Tyr3-125I)-labelled neurotensin to intestinal muscle, plasma membranes have been purified from dog intestinal circular smooth muscle. Purification was done by differential centrifugation followed by separation on a sucrose gradient. Electron microscopic study revealed that the dissected circular muscles used as the source of membranes were free of myenteric plexus and that the plasma membrane fraction obtained was free of any mitochondria or synaptosomes. The fraction used was obtained at the interface of 14%-33% sucrose density on the gradient and was 25-times enriched in the plasma membrane marker enzyme 5'-nucleotidase activity as compared to post-nuclear supernatant. This fraction contained negligible activity of mitochondrial membrane marker enzyme cytochrome c oxidase and low activity of a putative endoplasmic reticulum marker enzyme NADPH-cytochrome-c reductase. This membrane fraction contained a high density of neurotensin binding sites. This binding was studied by kinetic and by saturation approaches. Analysis of data from saturation binding studies by the computer programs (EBDA and LIGAND) suggested the presence of a two-site model (Kd1 = 0.118 nM, Kd2 = 3.18 nM, Bmax1 = 9.73 fmol/mg and Bmax2 = 129.8 fmol/mg). A part of specifically bound neurotensin was rapidly dissociated. No cooperativity between the two receptor types could be detected. A kinetic analysis of binding gave the Kd value equal to 0.107 nM. Carboxy terminal amino acid residues 8-13 were found to be essential for the binding activity and replacement of Tyr11 by tryptophan reduced the affinity of the peptide by 10 times in displacement studies. Binding was modulated by sodium ions and a guanine nucleotide Gpp[NH]p. MgCl2, CaCl2 and KCl were also found to reduce the specific binding. Evidence was found of a high specific binding to another membrane fraction poor in plasma membranes and rich in synaptosomes. We concluded that plasma membrane of canine intestinal circular muscle contains neurotensin receptors with recognition properties distinct from those obtained in previous studies of neurotensin binding sites in murine tissues. Another neurotensin binding site may be present on neuronal membranes.  相似文献   

10.
A peptidase that inactivated neurotensin by cleaving the peptide at the Pro10-Tyr11 bond, generating the biologically inactive fragments neurotensin(1-10) and neurotensin(11-13) was purified from whole rat ileum homogenate. The purified enzyme behaved as a 70-75-kDa monomer as determined by SDS-PAGE analysis in reducing or non-reducing conditions and gel permeation on Ultrogel AcA34. The peptidase was insensitive to thiol-blocking agents and acidic and serine protease inhibitors but could be strongly inhibited by 1,10-phenanthroline, EDTA, dithiothreitol and heavy metal ions such as zinc, copper and cobalt. Zinc was the only divalent cation able potently to reactivate the apoenzyme. This enzyme could be distinguished from endopeptidases EC 3.4.24.15 and EC 3.4.24.11, angiotensin-converting enzyme, proline endopeptidase, aminopeptidase and pyroglutamyl-peptide hydrolase since it was not affected by micromolar concentrations of their specific inhibitors. The peptidase displayed a high affinity for neurotensin (1.6 microM). Studies concerning the specificity of the enzyme towards the sequence of neurotensin established the following. (a) Neurotensin(9-13) was the shortest partial sequence that fully inhibited tritiated neurotensin degradation; shortening the C-terminal part of the neurotensin molecule led to inactive fragments. (b) Amidation of the C-terminal end of the peptide did not prevent the recognition by the peptidase. (c) There existed a strong stereospecificity of the peptidase for the residues in positions 8, 9 and 11 of the neurotensin molecule. (d) Pro-Xaa dipeptides (where Xaa represented aromatic or hydrophobic residues) were the most potent inhibitors of tritiated neurotensin degradation while all the Xaa-Pro dipeptides tested were totally ineffective. (e) The neurotensin-related peptides: neuromedin N, xenopsin and [Lys8-Asn9]neurotensin(8-13), as well as angiotensins I and II and dynorphins(1-8) and (1-13) were as potent as neurotensin in inhibiting [3H]neurotensin hydrolysis.  相似文献   

11.
We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes will be compared to that previously established for membranes from central origin.  相似文献   

12.
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.  相似文献   

13.
C Shu  M Selmanoff 《Peptides》1989,10(1):131-136
We investigated Ca2+-dependent, depolarization-induced release of substance P (SP) and LH-RH from medial basal hypothalamic (MBH) and substantia nigra (SN) synaptosomes prepared from male rat brain. Depolarization of MBH synaptosomes evoked significant release of SP from 10.0 +/- 0.1 (5 mM K+) to 28.0 +/- 2.4 (75 mM K+) pg released/10 seconds. Fractional release was 1.0% and 2.7% respectively. In contrast, LH-RH was not released by depolarization of MBH synaptosomes: 11.6 +/- 0.9 (5 mM K+) to 11.0 +/- 0.7 (75 mM K+) pg released/10 seconds. Fractional release was 1.1 and 1.0% respectively. Depolarization-induced LH-RH release also did not occur in the presence of 10(-4) or 10(-6) M norepinephrine, 10(-7) M 12-O-tetradecanoylphorbol-13-acetate (TPA, PMA), 10(-5) M forskolin or in female rats. The inability of depolarizing concentrations of K+ to stimulate LH-RH release in physiological buffers remains an enigma. Significant depolarization-induced SP release was seen from MBH and SN synaptosomes at 20, 15, 10, 5 and only 1 second of release. Despite comparable basal release of SP from MBH and SN synaptosomes, the rate and magnitude of evoked release were much more pronounced in SN synaptosomes. The initial rate (0-1 second) of SP release was 4.5-fold greater from SN than from MBH synaptosomes [krel = 0.027(-1) (SN), krel = 0.006(-1) (MBH)]. The magnitude of SP release from SN synaptosomes was 2- to 3-fold greater at any given time interval compared with release from MBH synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The metabolism of neurotensin in vitro, in various membrane preparations and cell lines of central and peripheral origins was studied. Neurotensin degradation products were separated by HPLC and identified by either amino acid analysis or by their retention times. Peptidases responsible for the cleavages were identified by means of specific fluorigenic substrates or inhibitors. Although the patterns of neurotensin inactivation varied according to the tissue source in all cases, a major primary cleavage occurred at the Pro10-Tyr11 bond, leading to the biologically inactive fragments NT1-10 and NT11-13. A novel neurotensin-degrading metallopeptidase was responsible for this cleavage. Interestingly, it was the only peptidase that was ubiquitously detected. In addition, endopeptidase 24.11 (EC 3.4.24.11) contributed to this cleavage in rat brain synaptic membranes as well as in circular and longitudinal smooth muscle plasma membranes from dog ileum.  相似文献   

15.
The mapping of neuropeptidases in synaptosomal fractions prepared from dog ileum myenteric, deep muscular and submucous plexus was established by means of fluorigenic substrates and specific inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme and aminopeptidases were found in all tissues, the highest amounts being recovered in the submucous preparation. Post-proline dipeptidyl aminopeptidase was obtained in high quantities whatever the tissue source while proline endopeptidase was detected in low amounts and pyroglutamyl-peptide hydrolase was never detectable. The above peptidases were examined for their putative participation in the inactivation of neurotensin by monitoring the effect of specific inhibitors on the formation of the metabolites of labeled neurotensin separated by HPLC. Endopeptidases 24.11, 24.15 and 24.16 were respectively responsible for the formation of neurotensin(1-11), neurotensin(1-8) and neurotensin(1-10) that are devoid of biological activity. The secondary attacks occurring on neurotensin degradation products were the following: cleavage of neurotensin(1-10) into neurotensin(1-8) by angiotensin-converting enzyme; conversion of neurotensin(9-13) into neurotensin(11-13) by post-proline dipeptidyl aminopeptidase; hydrolysis of neurotensin(11-13) into free tyrosine by aminopeptidase(s).  相似文献   

16.
An endopeptidase was solubilized and highly purified from the synaptosomal membrane fraction of guinea pig brain, and its specificity of action on various neuropeptides was investigated. It hydrolyzed specifically the Pro10-Tyr11 bond of neurotensin and showed a marked specificity toward Pro-X bonds present in the interior parts of various neuropeptides and related peptides. No cleavage, however, was observed at the first and second peptide bonds from the NH2-termini or from the COOH-termini of the peptides examined, suggesting that the enzyme requires both NH2- and COOH-terminal extentions of at least 3 residues from the scissile bond for its action. In addition, a limited number of other peptide bonds were cleaved, indicating that the enzyme is not strictly specific to Pro-X bonds. These results suggest the possible implication of this enzyme in the specific degradation of neurotensin and other peptide neurotransmitters in the synaptic cleft.  相似文献   

17.
In the present study we investigated the possible participation of endo-oligopeptidase B (poline-endopeptidase) in the control of gonadotrophin secretion through the control of LH-RH inactivation. This enzyme selectively hydrolyzes the Pro9-Gly10-NH2 peptide bond of LH-RH, thereby inactivating this substance. The enzyme activity was evaluated using a specific colorimetric substrate, i.e., Z-Gly-Pro-SM. Female adult Wistar rats were submitted to castration, experimental situations that are known to produce changes in gonadotrophin secretion. Hypothalamic and pituitary endo-oligopeptidase B activity was shown to be present predominantly in the soluble fraction of the enzyme preparations. The results also indicated that endo-oligopeptidase B activity adult female rat pituitary decreased after castration and increased after administration of estradiol and progesterone to castrated animals. The present results lead us to suggest that anterior pituitary endo-oligopeptidase B may be related to the control gonadotrophin secretion in female rats.  相似文献   

18.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

19.
F Ni  H A Scheraga  S T Lord 《Biochemistry》1988,27(12):4481-4491
The proton resonances of the following synthetic linear human fibrinogen-like peptides were completely assigned with two-dimensional NMR techniques in solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Gly(12)-Gly(13)-Gly(14)- Val(15)-Arg(16)-Gly-Pro-Arg-Val-Val-Glu-Arg (F10), Ala-Asp-Ser-Gly-Glu-Gly-Asp-Phe-Leu-Ala-Glu-Gly-Gly(13)-Gly(14)-Val-Arg (F11), and Gly-Pro-Arg-Val-Val-Glu-Arg (F12). No predominant structure was found in the chain segment from Ala(1) to Gly(6) for F10 in both H2O and dimethyl sulfoxide. The previous suggestion that there is a hairpin loop involving residues Gly(12) to Val(15) in the A alpha chain of human fibrinogen is supported by the slow backbone NH exchange rates of Gly(14) and Val(15), by an unusually small NH chemical shift of Val(15), and by strong sequential NOE's involving this region in F10. This local chain fold within residues Asp(7) to Val(20) may place the distant Phe residue near the Arg(16)-Gly(17) peptide bond which is cleaved by thrombin.  相似文献   

20.
The effect of combination of the hydrophilic aza-Gly substitution (NHNHCO) at position 10 with hydrophobic, unnatural D-amino acids in position 6 on the potency of luteinizing hormone-releasing hormone (LH-RH) analogues has been investigated. Previously the aza-Gly residue was shown to provide protection from enzymatic cleavage and lead to potency increases in a less hydrophobic series. The compounds were prepared by coupling of the corresponding nonapeptide acids with semicarbazide hydrochloride by the N,N'-dicyclohexylcarbodiimide/1-hydroxybenzotriazole procedure. The required nonapeptide acids were prepared by the solid phase method on chloromethyl-polystyrene resin using HF/anisole deprotection. The products were purified by preparative reversed-phase high-performance liquid chromatography. The analogues were tested in a rat estrous cyclicity suppression assay designed to show the paradoxical antifertility effects of these compounds. The potencies of [6-(3-benzimidazol-2-yl)-D-alanine), 10-aza-glycine] LH-RH and [6-(3-(5,6-dimethylbenzimidazol-2-yl)-D-alanine), 10-aza-glycine] LH-RH are 40 and 190 times that of LH-RH respectively. The most active compound in this series is [6-(3-(2-naphthyl)-D-alanine), 10-aza-glycine] LH-RH with a potency 230 times that of LH-RH. This compound is 2.3 times as potent as the standard ([D-Trp6, Pro9-NHEt] LH-RH) and appears to be the most potent LH-RH agonist reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号