共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that in recent years has found numerous applications for studying biological phenomena. In this article, we scrutinize one of these applications, namely, FCS as a technique for studying leakage of fluorescent molecules from large unilamellar lipid vesicles. Specifically, we derive the mathematical framework required for using FCS to quantify leakage of fluorescent molecules from large unilamellar lipid vesicles, and we describe the appropriate methodology for successful completion of FCS experiments. By use of this methodology, we show that FCS can be used to accurately quantify leakage of fluorescent molecules from large unilamellar lipid vesicles, including leakage of fluorescent molecules of different sizes. To demonstrate the applicability of FCS, we have investigated the antimicrobial peptide mastoparan X. We show that mastoparan X forms transient transmembrane pores in POPC/POPG (3:1) vesicles, resulting in size-dependent leakage of molecules from the vesicles. We conclude the paper by discussing some of the advantages and limitations of FCS as compared to other existing methods to measure leakage from large unilamellar lipid vesicles. 相似文献
2.
Lipids in eukaryotic cell membranes have been shown to cluster in "rafts" with different lipid/protein compositions and molecular packing. Model membranes such as giant unilamellar vesicles (GUVs) provide a key system to elucidate the physical mechanisms of raft assembly. Despite the large amount of work devoted to the detection and characterization of rafts, one of the most important pieces of information still missing in the picture of the cell membrane is dynamics: how lipids organize and move in rafts and how they modulate membrane fluidity. This missing element is of crucial importance for the trafficking at and from the periphery of the cell regulated by endo- and exocytosis and, in general, for the constant turnover which redistributes membrane components. Here, we review studies of combined confocal fluorescence microscopy and fluorescence correlation spectroscopy on lipid dynamics and organization in rafts assembled in GUVs prepared from various lipid mixtures which are relevant to the problem of raft formation. 相似文献
3.
Mandip Singh Gary Faulkner Tarun I. Ghose Michael Mezei 《Cancer immunology, immunotherapy : CII》1988,27(1):17-25
Summary The potential of antibody-linked SUVs containing MTX in anticancer therapy was investigated. The SUVs, mean diameter 50±20 nm, were prepared by probe sonication of MTX-containing MLVs and were covalently linked either to a RAMG or NRG. After incubation with M21 melanoma cells for 2 h, RAMG-linked SUVs showed 2 and 4 times more binding than NRG-linked MTX-containing SUVs or MTX-containing SUVs unlinked to any Ig. Furthermore, on incubating M21 melanoma cells with RAMG-linked 3H MTX-containing SUVs for 2, 4, and 8 h at 4° C or 37° C, a higher radioactivity was associated with cells at 37° C than at 4° C. Membrane immunofluorescence revealed aggregation of and cap formation by RAMG-linked SUVs after 2 h (37° C) and endocytosis at 4 and 8 h at 37° C. Electron microscopic and autoradiographic studies confirmed aggregation of 3H MTX-containing SUVs around and on the surface of M21 cells. Electron microscopy also revealed these SUVs inside invaginations of and under the plasma membrane of melanoma cells. A colony inhibition assay showed that RAMG-linked, MTX-containing SUVs were 60 times, 8 times, and 4.5 times more growth inhibitory than free MTX, NRG-linked MTX-containing SUV, and MTX-containing SUVs unlinked to any Ig, but not toxic to a human kidney cancer line (that did not react with RAMG).
Abbreviations used: DPPC, DL- -dipalmitoyl phosphatidylcholine; DTT, dithiothreitol; MTX, methotrexate; (MTX)SUV or MLV, MTX-containing SUV or MLV; MLV, multilamellar vesicle; NRG, normal rabbit immunoglobulin G; RAMG, rabbit antimelanoma IgG; SA, stearylamine; SPDP, N-succinimidy1-3-(2-pyridyldithio)propionate; SUV, small unilamellar vesicle; CHOL, cholesterol; LUV, large unilamellar vesicle; Ig, immunoglobulin; PDP-SA, N-[3-(2-pyridyldithio)-propinyl]stearylamine 相似文献
4.
In the presence of 10% (0.3 M) sucrose in the aqueous medium, small unilamellar phospholipid vesicles are preserved during freeze-drying and spray-drying. Moreover, the bilayer integrity and permeability barrier are maintained during these processes. 相似文献
5.
The translational diffusion coefficient D20,w0, of monomeric human immunoglobulin G (IgG) has been studied by photon-correlation spectroscopy as a function of pH and protein concentration. At pH 7.6, we find D20,w0=3.89×10–7±0.02 cm2/sec, in good agreement with the value determined by classic mehods. This value corresponds to an effective hydrodynamic radius R, of 55.1±0.3 Å. As pH is increased to 8.9; with the same ionic strength, the molecule appears to expand slightly (3.5% increase in hydrodynamic radius). The concentration dependence of the IgG diffusion constant is interpreted in terms of solution electrostatic effects and shows that long-range repulsive interactions are negligible in the buffer used. The diffusion coefficient for dimeric IgG has also been determined to be D20,w=2.81×10–7±0.04 cm2/sec at 1.6 mg/ml, which corresponds to a hydrodynamic radius of 75 Å. For light-scattering studies of protein molecules in the dimension range of 5–10 nm (Mr=105–107) we find monomeric horse spleen ferritin well suited as a reference standard. Ferritin is a spherical molecule with a hydrodynamic radius R of 6.9±0.1 nm and is stable for years in our standard Tris-HCl-NaCl buffer even at room temperature. 相似文献
6.
The exchange of cholesterol between two populations of small unilamellar vesicles has been investigated using a new system. Uniformly sized egg lecithin-cholesterol vesicles containing [3H]cholesterol and the glycolipid N-palmitoyl-DL-dihydrolactocerebroside were used as donors, whereas similar vesicles containing unlabelled cholesterol and no glycolipid were used as cholesterol acceptors. The two populations of vesicles were separated with the castor bean lectin Ricinus communis. It was found that greater than 90% of the cholesterol in the donor vesicle could be exchanged with a single time constant, the half-time for the completion of this exchange process being 1.5 h at 37 degrees C. Therefore, the rate of transmembrane movement or flip-flop of cholesterol in these vesicles must be at least as fast as the intermembrane exchange process. Similar results were obtained using hemoglobin-free human erythrocyte ghosts as the acceptor membrane. If the molecular-sieve chromatography step used to fractionate the vesicles was omitted, a non-exchangeable pool of cholesterol was detected which was shown not to be due to the presence of multilamellar vesicles. 相似文献
7.
8.
B Cestaro G Cervato S Ferrari G Di Silvestro D Monti P Manitto 《The Italian journal of biochemistry》1983,32(5):318-329
Interaction of bilirubin with phospholipid bilayers was studied at physiological pH above and below the gel-liquid crystalline phase transition of small unilamellar vesicles of dipalmitoylphosphatidylcholine. Chromatographic, calorimetric and 1H-NMR evidences strongly suggest that dianion form of bilirubin binds to the polar heads of the phosphatidylcholines protruding from the outer leaflet of the vesicles, whilst acid bilirubin, which is insoluble in water, is hydrophobically inserted into the lipophilic region of the bilayers. The surface-bound bilirubin is promptly removed from vesicles, whilst the acid form hydrophobically inserted into the vesicles is firmly bound to the membrane in the gel state. This pool of bilirubin could perturb the chemico-physical properties of the membrane (i.e., fluidity, phase transition, etc. ...) thus contributing to perturbation of the biological properties of living cells. 相似文献
9.
Circular dichroism study of the interaction between aromatic heptaene antibiotics and small unilamellar vesicles 总被引:1,自引:0,他引:1
J Mazerski J Bolard E Borowski 《Biochemical and biophysical research communications》1983,116(2):520-526
Unlike the non-aromatic heptaene amphotericin B, only two types of complex are revealed by circular dichroism when the aromatic heptaenes interact with lipid vesicles. The first is formed when no permeability is observed. The second one is correlated with the appearance of permeability. The cholesterol concentration and the physical state of the membrane have influence only on the amount of the permeabilizing species. These results indicate important differences in the membrane properties of aromatic and non-aromatic heptaenes. 相似文献
10.
Small, unilamellar phospholipid vesicles have been prepared using a new, high-powdered cup sonifier that avoids contact of the sample with a titanium probe. These vesicles have been characterized by gel filtration chromatography both before and after fractionation by high-speed centrifugation. Plots of the turbidity of centrifuged vesicles between 300 and 650 nm against the reciprocal fourth power of the scattering wavelength were linear with zero intercepts (extrapolated to infinite wavelength). In the presence of minute quantities of large, multilamellar vesicles, these plots remained linear but had intercepts quantitatively proportional to the amount of contaminating large vesicles. Since this measurement requires only a standard spectrophotometer and very small quantities of lipid, this method is suggested as a useful assay for determining contamination of small vesicle preparations by large vesicles. Two applications of this method as well as a practical limitation are discussed. 相似文献
11.
Kinetics of melittin-induced fusion of dipalmitoylphosphatidylcholine small unilamellar vesicles 总被引:1,自引:0,他引:1
We have studied the kinetics of fusion of dipalmitoylphosphatidylcholine small unilamellar vesicles at 51 degrees C which is induced by bee venom melittin at a protein-to-lipid molar ratio of 1/60. This was done by following with a stopped-flow fluorometer the reduction in the ratio of the excimer to monomer fluorescence intensities of 1-palmitoyl-2-(10-pyrenyldecanoyl)-sn-glycero-3-phosphorylcholine that accompanies fusion. At a low melittin concentration and low ionic strength, for which case the protein is monomeric, the value of the rate constant for fusion is 0.006 s-1. This is much smaller than that of 0.06 s-1 obtained for a high melittin concentration at low ionic strength, i.e. for the protein in the tetrameric form which is not induced by a high salt concentration. The value of the rate constant for fusion for a low melittin concentration in the presence of 2 M NaCl, i.e. for the protein in the tetrameric form which is induced by a high salt concentration, is 0.12 s-1. This is twice as large as that for fusion induced by the tetramer in a low ionic strength solution. These findings show that the state of aggregation of the protein in solution and, to a lesser extent, electrostatic interactions play an important role in the kinetics of melittin-induced fusion of vesicles. 相似文献
12.
Spontaneous fusion of phosphatidylcholine small unilamellar vesicles in the fluid phase 总被引:2,自引:0,他引:2
Using a high-sensitivity differential scanning microcalorimeter capable of performing cooling scans, we have examined the phase behavior of small unilamellar vesicles (SUV) as a function of time of storage above their order-disorder phase transition. Vesicles composed of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were examined. Cooling scans on fresh (5-7-h postsonication) samples revealed broad, relatively simple heat capacity peaks (peak temperatures: 19.9 degrees C for DMPC, 37.8 degrees C for DPPC) free of high-temperature spikes or shoulders. Subsequent heating scans displayed a sharp peak characteristic of previously described fusion products formed below the phase transition. SUV samples stored for 1 or more days above their phase transition displayed a moderately broad, high-temperature shoulder (23.8 degrees C for DMPC and 40.2 degrees C for DPPC) in the cooling profile. For DMPC, the enthalpy associated with this peak increased in a first-order fashion with time. Hydrolysis products were not detected until 12-20 days of storage. Both the rate and extent of shoulder appearance increased with temperature (k = 0.0017 h-1, fraction of total enthalpy = 0.1 at 36 degrees C; k = 0.0037 h-1, fraction = 0.2 at 42 degrees C). Freeze-fracture electron micrographs confirmed that an intermediate-sized vesicle population (diameters 400-500 A) appeared in SUV samples stored above their phase transition. Also, the trapped volume of DMPC SUV increased from 0.26 microL/mumol after 17 h of storage to 0.54 microL/mumol after storage for 16 days at 36 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
We have used the decrease in the fluorescence intensity of the single tryptophan residue of bee venom melittin at long emission wavelengths that accompanies binding of the peptide to phospholipid small unilamellar vesicles to determine the rate of binding through the use of stopped-flow fluorometry in the millisecond range. We have found the rate to depend on the degree of saturation of the lipid acyl chains as well as on the physical state of the bilayer, the net electric charge of the polar headgroups, and the lipid-to-melittin molar ratio R. For zwitterionic lipids (i) the binding process is found to exhibit negative cooperativity, and (ii) the rate-limiting step appears to be penetration of the protein into the hydrophobic region of the bilayer. For negatively charged lipids the results show that binding is a very fast process that seems to be electrostatic in nature. 相似文献
14.
Fusion of small unilamellar vesicles with viable EDTA-treated Escherichia coli cells. 总被引:1,自引:0,他引:1
下载免费PDF全文

Fusion characteristics of EDTA-treated Escherichia coli cells with small unilamellar vesicles were investigated, using a membrane fusion assay based on resonance energy transfer. Ca2+-EDTA treatments of Escherichia coli O111:B4 (wild type), E. coli C600 (rough), and E. coli D21f2 (deep rough) which permeabilize the outer membrane by inducing the release of lipopolysaccharide and outer membrane proteins resulted in fusion activity of the intact and viable bacteria with small unilamellar vesicles. No fusion activity was observed when the EDTA treatment was omitted. Fusion could be elicited at low pH and by a combination of a higher pH and Ca2+. The low-pH-induced fusion was composed of a fast and a slow reaction. The latter and the Ca2+-induced fusion could be completely inhibited by trypsin treatments of the EDTA-treated cells, which also resulted in the simultaneous disappearance of two outer membrane protein bands (50 and 58 kilodaltons) and the appearance of proteins banding at 22, 52, and 54 kilodaltons. The most efficient fusion was obtained with negatively charged liposomes composed of cardiolipin. In contrast to the Ca2+-induced fusion, fusion was observed at low pH with small unilamellar vesicles containing lipids with decreased negative charge (phosphatidylserine). Fluorescent and phase-contrast microscopy revealed that essentially all bacteria were engaged in fusion. We propose that a Ca2+-EDTA treatment of E. coli cells results in the appearance of phospholipids and the exposure of a protein(s) in the outer leaflet of the outer membrane, both of which could mediate fusion with liposomes. 相似文献
15.
The fusogenic properties of sulfatide-containing 1,2-dioleoyl-3-sn -phosphatidylethanolamine (DOPE) small unilamellar vesicles (SUVs) in the presence of CaCl2 were studied by mixing membrane lipids based on an assay of fluorescence resonance energy transfer (FRET). Fusion of the vesicles was also confirmed by mixing aqueous contents with the Tb/dipicolinate (DPA) assay. The half-times of lipid mixing revealed that the fusion rate decreased with increasing molar concentration of sulfatide. This inhibitory effect was more obvious at sulfatide concentrations higher than 30 mol%, where hydration at the membrane surface reached its maximum and the fusion was no longer pH-sensitive in the range of pH 6.0 - 9.0. Similar inhibitory effect was also observed in Ca2+-induced fusion of DOPE/ganglioside GM1 vesicles but at a lower concentration of the glycosphingolipid (20 mol%). In contrast, increasing the concentration of phosphatidylserine (PS) in DOPE/PS SUVs resulted in an increase in the rate of Ca2+-induced lipid mixing and the pH sensitivity of this system was not affected.These results are consistent with an increasing steric hindrance to membrane fusion at higher molar concentration and larger headgroup size of the glycosphingolipids. Interestingly, the pH sensitivity of the sulfatide-containing liposomes was retained when they were allowed to fuse with synaptosomes in the absence of Ca2+ by a mechanism involving protein mediation. 相似文献
16.
17.
Light scattering by thermal fluctuations on simple monoglyceride bilayer membranes has been used to investigate the viscoelastic properties of these structures. Spectroscopic analysis of these fluctuations (capillary waves) permits the nonperturbative measurement of the interfacial tension and a shear interfacial viscosity acting normal to the membrane plane. The methods were established by studies of solvent and nonsolvent bilayers of glycerol monooleate (GMO). Changes in the tension of GMO/n-decane membranes induced by altering the composition of the parent solution were detected and quantified. In a test of the reliability of the technique controlled variations of the viscosity of the aqueous bathing solution were accurately monitored. The technique was applied to solvent-free bilayers formed from dispersions of GMO in squalane. The lower tensions observed attested to the comparative absence of solvent in such bilayers. In contrast to the solvent case, the solvent-free membranes exhibited a significant transverse shear viscosity, indicative of the enhanced intermolecular interactions within the bilayer. 相似文献
18.
Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles. 总被引:2,自引:0,他引:2
Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase. 相似文献
19.
Assembly of the membrane attack complex of complement on small unilamellar phospholipid vesicles 总被引:3,自引:0,他引:3
Light-scattering intensity was shown to be a reliable, direct, and quantitative technique for monitoring the assembly of the membrane attack complex of complement (proteins C5b-6, C7, C8, and C9) on small unilamellar phosphatidylcholine vesicles. The assembly on vesicles occurred in a simple fashion; complexes of C5b-7 bound noncooperatively to the vesicles, and final assembly of C5b-9 did not induce vesicle aggregation or fragmentation. When C5b-6 and C7 were mixed in the presence of vesicles but at molar protein/vesicle ratios of less than 1, there was quantitative binding of C5b-7 to the vesicles with no concomitant aggregation of C5b-7. If C7 was added at a slower rate, quantitative binding was obtained at molar C5b-7/vesicle ratios of up to 5. The latter observations (a) were consistent with the proposal that C5b-7 aggregation and membrane binding were competitive events and (b) defined conditions under which light-scattering intensity measurements could monitor C5b-9 assembly on vesicles without contribution from the fluid-phase assembly. The C8/C5b-7 ratio in the phospholipid-C5b-8 complex was 0.97 +/- 0.12, and the maximum ratio of C9/C5b-8 in the final complex was 16.2 +/- 2.0. One C9 molecule associated rapidly with each phospholipid-C5b-8, followed by slower incorporation of the remaining C9 molecules. The initial velocity of the slow phase of C9 addition was easily saturated with C9 and gave an activation energy of 37 kcal/mol. This was identical with the value measured for the analogous process in the fluid-phase assembly.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Formation of multilamellar vesicles by addition of tannic acid to phosphatidylcholine-containing small unilamellar vesicles 总被引:1,自引:0,他引:1
A H Schrijvers P M Frederik M C Stuart K N Burger V V Heijnen G J Van der Vusse R S Reneman 《The journal of histochemistry and cytochemistry》1989,37(11):1635-1643
Tannic acid induces aggregation and formation of multilamellar vesicles when added to preparations of small unilamellar vesicles, specifically those containing phosphatidylcholine. Aggregation and clustering of vesicles was demonstrated by cryo-electron microscopy of thin films and by freeze-fracture technique. Turbidity measurements revealed an approximately one-to-one molar ratio between tannic acid and phosphatidylcholine necessary for a fast and massive aggregation of the small unilamellar vesicles. When tannic acid-induced aggregates were dehydrated and embedded for conventional thin-section electron microscopy, multilamellar vesicles were retrieved in thin sections. It is concluded from morphological studies, as well as previous tracer studies, that tannic acid, at least to a great extent, prevents the extraction of phosphatidylcholine. Multilamellar vesicles were also observed in tannic acid-treated vesicles prepared from total lipid extracts from either rabbit or rat hearts. Substantially more multilamellar vesicles were retrieved in the rabbit vesicle preparation. This difference can probably be explained by the difference in the proportion of the plasmalogen phosphatidylcholine, and possibly the content of sphingomyelin, in lipid extracts of rabbit and rat hearts. It is concluded that the dual effect (reduced extraction and aggregation) of tannic acid on phosphatidylcholines should be taken into consideration when tannic acid is used in tissue preparation. 相似文献