首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vicia faba root tip cells were treated for short periods with tritiated thymidine, either immediately before or after exposure of roots to x-rays, and autoradiograph preparations were analysed in an attempt to test the hypothesis that chromatid type (B') aberrations are induced only in those chromosome regions that have synthesized DNA prior to x-irradiation, whereas chromosome type (B') aberrations are induced only in unduplicated chromosome regions. Studying the relation between presence or absence of label at loci involved in aberrations, in cells irradiated at different development stages, and the pattern of labelling in cells carrying both types of aberration leads to the conclusion that B' aberrations are induced only in unreplicated chromosome regions. Following replication, only B' aberrations are induced, but these aberrations are also induced in chromosome regions preparing to incorporate DNA. It is suggested that the doubled response of the chromosome to x-rays prior to DNA incorporation might reflect a physical separation of replicating units prior to replication. The aberration yields in damaged cells which were irradiated in G1 S, and early G2 were in the ratio of 1.0:2.0:3.2. The data indicate that the increased yield of B' in early G2 relative to S cells may be a consequence of changes in the spatial distribution of the chromosomes within the nucleus.  相似文献   

2.
The intrachromosomal distribution patterns of chromatid aberrations induced by N-methyl-N-nitrosourethane (MNU), N-ethyl-N-nitrosourethane (ENU) and ethyleneimine (EI) were compared with those induced by combined treatment with the same mutagens and caffeine, the latter being considered as an inhibitor of post-replication repair of DNA.Chromatid aberrations induced by mutagens alone were distributed non-randomly along the chromosomes. In certain regions few aberrations were located; in others pronounced clustering of aberrations was observed and these regions were considered to be hot spots. This refers especially to MNU- and EI-induced aberrations, whereas ENU-induced chromatid aberrations showed a more length-proportional distribution. In ENU experiments, certain chromosomal segments also represented hot spots, but these were less pronounced. The distribution patterns of chromatid aberrations induced by combined treatment with mutagens and caffeine differed significantly from those observed in experiments with the mutagens only. There seemed to be a tendency to approach random distribution here. This was a result both of the decrease in the quantity of the aberrations in the regions, which in the experiments with mutagens only were hot spots, and of its increase in other chromosomal regions. Some of these regions were considered as hot spots but they were less pronounced. These tendencies refer to MNU and EI. Certain differences between the two variants, with the without caffeine, in ENU experiments were observed but these were of lower expressivity.The causes od differential sensivity of chromosomal regions are discussed. The conclusion is drawn that clustering of chromatid aberrations in certain chromosomal regions is due to differences in the repair systems acting in heterochromatic and euchromatic regions.  相似文献   

3.
This paper provides a theoretical analysis of pecularities of both the frequency and intrachromosomal distribution of chromatid aberrations observed in the first post-treatment mitosis and induced by clastogenic agents showing delayed effects (S-phase dependent clastogens), as functions of recovery time. The theoretical deductions are based on the following facts: (1) DNA is the target of clastogen action. Lesions induced by clastogens showing delayed effects (e.g. mono- and polyfunctional alkylating agents, ultraviolet light) give rise to aberrations only after interference with the process(es) associated with DNA replication. (2) DNA replication occurs asynchronously with respect to the local involvement in replication of different chromatin regions and according to a highly ordered pattern. (3) Lesions may be removed from DNA (or otherwise modified) by repair processes prior to replication. The removal of lesions from DNA is a time-dependent function.Several possibilities are analysed (i.e. random or non-random distribution of DNA lesions, uniform or locally differing capacities of pre-replicative repair of lesions, uniform or locally differing rates of DNA synthesis) and the frequencies and distribution patterns of chromosome structural changes, as expressed in form of aberration yield-time curves, have been discussed. The theory presented in this paper offers a simple interpretation both of variations of aberration frequency and aberration distribution in dependence on the cell's position within the cell cycle during induction of lesions.It is shown that the intrachromosomal aberration distribution is non-random even if random distribution of lesions and uniform repair rates between chromosome regions replicating at different time periods during S are assumed. Non-random aberration distributions are a necessary consequence of at least two factors: (a) the temporal replication pattern, and (b) the repair activities acting prior to replication. Random distribution of aberrations is only to be expected for the most simplified situation (random distribution of lesions along the DNA and equal transformation probabilities of a given kind of lesion into aberrations) when no loss of lesions prior to replication takes place (no pre-replicative repair) and cells treated with the mutagen during G1 are analysed.  相似文献   

4.
This paper is a study of the effect of exogenous DNA of different genetic origins on the repair of meristematic cells of primary roots ofVicia faba, damaged by 24 hour treatment with 0·01mm solution of Ypenyl. Both kinds of DNA,i.e. isologous and heterologous, stimulated cell proliferation which was decreased by the action of the radiomimetic and influenced both dynamics of production of chromosome aberrations and the interchromosomal distribution of induced damage. While heterologous DNA increased the frequency of aberrations after all recovery periods studied, isologous DNA significantly decreased the number of chromosomal aberrations. Heterologous DNA increased at the same time the relative number of breaks in the group of small chromosomes, while by the action of isologous DNA the number of aberrations related to this group of chromosomes was relatively decreased.  相似文献   

5.
Primary roots of a new karyotype of Vicia faba with all chromosomes inter-distinguishable have been used to study the induction by hydroxylamine hydrochloride (HA) of chromatid aberrations and their intrachromosomal distribution. HA induced both chromatid intra- and interchanges of the delayed type. The effectiveness of HA increased with increasing temperature and was dependent on the pH during treatment (more aberrations at pH 7.5 as compared with 4.8). The frequency of incomplete reunion was markedly higher after HA treatment than after treatment with maleic hydrazide (MH) or ethanol. In combined treatments, HA reduced the reunion involvement in HA-induced aberrations of certain chromosome segments was found and compared with distribution patterns of chromatid aberrations after treatment with MH and ethanol. Data and hypotheses concerning possible modes of action of HA eventually resulting in chromosome structural changes are discussed. It is concluded that alterations of the cytosine moiety in chromosomal DNA are not responsible for chromosomal damage induced by HA.  相似文献   

6.
《Mutation research》1997,374(2):245-251
Ultrasound permeabilizes Chinese hamster ovary (CHO) cells for the endonucleases AluI and benzon nuclease which leads to the induction of chromosomal aberrations by these enzymes. A few aberrant cells were observed when trypsinized cells or adherent cells were exposed to the enzymes in the absence of ultrasound. Our data show that sonication can be used to introduce endonucleases into CHO cells. We further demonstrate that few cells can internalize endonucleases without previous permeabilization.  相似文献   

7.
Entomopoxvirus (EPV) occlusion bodies isolated from Arphia conspersa and Melanoplus sanguinipes grasshoppers were fed to 3rd and 4th instar Locusta migratoria nymphs. Locus mortality induced by A. conspersa EPV was first detected 18 days after addition of virus to the diet, and reached a level of approximately 68% of the colony population by 60 days after virus inoculation. In a similar population of L. migratoria nymphs, mortality induced by M. sanguinipes virus reached 90% 60 days after virus inoculation. Entomopoxvirus was isolated from M. sanguinipes EPV infected locust nymphs and the viral DNA was cleaved with several restriction endonucleases. The DNA fragment patterns obtained after agarose gel electrophoresis were compared with the fragment patterns from the original sample of M. sanguinipes EPV DNA cleaved with the same restriction endonucleases. No differences in the cleavage patterns were detected between the two virus DNA samples. Virus structural proteins of M. sanguinipes EPV purified from infected locust nymphs were compared by polyacrylamide gel electrophoresis with virus proteins isolated from the original sample of M. sanguinipes EPV. A total of six different virus protein bands were detected between the two poxvirus preparations.  相似文献   

8.
A. T. Natarajan  G. Obe 《Chromosoma》1984,90(2):120-127
Chinese hamster ovary cells (CHO cells) and mouse fibroblasts (PG 19) were permeabilized with inactivated Sendai virus, treated with different types of restriction endonucleases (Eco RV, Pvu II, Bam HI, Sma I, Asu III, Nun II), and studied for the occurrence of chromosomal aberrations at different times following treatment. The pattern of chromosomal aberrations observed was similar to that induced by ionizing radiations. Restriction endonucleases that induce blunt double-strand breaks (Eco RV, Pvu II) were more efficient in inducing chromosomal aberrations than those that induce breaks with cohesive ends (Bam HI, Nun II, Asu III). Ring types were very frequent among the aberrations induced by restriction enzymes. Cytosine arabinoside, an inhibitor of DNA repair, was found to increase the frequencies of aberrations induced by restriction enzymes, indicating its effect on ligation of double-strand breaks. The relevance of these results to the understanding of the mechanisms of chromosomal aberration formation following treatment with ionizing radiations is discussed.  相似文献   

9.
《Mutation research》1987,181(1):9-16
In this review the authors present only their own results. They include the determination of the duration of the different stages of the cell cylce in UV-irradiated barley cells, the effect of different UV doses on the frequency of chromosome aberrations in barley, the increase in UV-induced chromosome aberration frequency induced in barley by caffeine and the effect of UV doses on the induction of pyrimidine dimers and sites sensitive to UV-endonuclease action (ESS) in barley cells and Nicotina tabacum protoplasts. In addition, the excision of pyrimidine dimers and ESS after irradiation with various doses of UV, unscheduled DNA synthesis in N. tabacum protoplasts and the correlation between the induction of pyrimidine dimers in DNA and the frequency of chromosome aberrations are reported. Data demonstrating that photoreactivation decrease the number of DNA lesions and chromosome aberrations induced by UV are also presented.  相似文献   

10.
Homing endonucleases are enzymes that catalyze the highly sequence-specific cleavage of DNA. We have developed an in vivo selection in Escherichia coli that links cell survival with homing endonuclease-mediated DNA cleavage activity and sequence specificity. Using this selection, wild-type and mutant variants of three homing endonucleases were characterized without requiring protein purification and in vitro analysis. This selection system may facilitate the study of sequence-specific DNA cleaving enzymes, and selections based on this work may enable the evolution of homing endonucleases with novel activities or specificities.  相似文献   

11.
The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding.  相似文献   

12.
Restriction endonucleases have been used to study the involvement of specific types of DNA damages in the production of chromosome aberrations. In this study restriction endonucleases were introduced into viable CHO cells using osmolytic shock of pinocytic vesicles. We compared two cohesive-end cutters, Msp I (CCGG-2-base overlap) and Sau3A I (GATC-4-base overlap) with two blunt-end cutters, Alu I (AGCT) and Rsa I (GTAC). All 4 enzymes were effective at inducing aberrations. The 4-base overlap cohesive-end cutter Sau3A I was approximately as effective as the blunt-end cutter Alu I. We present evidence that cutting frequency rather than cut end-structure is important in determining efficiency of aberration induction. There is over-dispersion of the distribution of dicentrics and rings among cells, and the data could be fitted to a Neyman Type A distribution, a modified Poisson, that indicates that there is a probability distribution both for the entry of the enzyme into a cell nucleus and for the induction of aberrations once the enzyme has entered a cell nucleus. In addition, we used Alu I to determine the sensitivity of cells to aberration induction in the different stages of the cell cycle. Alu I induced aberrations in all stages of the cycle, chromatid-type in S/G2 and chromosome-type in G1. In agreement with data of others, there were variations in sensitivity with cycle stage, and changes in the proportions of the different aberration classes for chromatid-type aberrations.  相似文献   

13.
Differences as well as similarities in the action of ionizing radiation and deoxyribonucleic acids from various sources on mitosis in root cells ofVicia faba were established. The time course of occurrence of aberrations were examined. Whereas in irradiated broad beant the maximum percentage of aberrations was observed immediately after irradiation, the aps plication of non-isologous DNA was followed by maximum aberrations after 8–16 hours. As all the time-intervals studied, an incraasad number of aberrations was found during metaphase-as compared with anaphases, both after irradiation and after application of DNA. A comparison of isologous, homologous and heterologous DNA as inductors of chromosomal aberrations supported our previous findings and showed that the efficiency of DNA depends on the genetic difference between donor and acceptor. During a study of distribution of aberrations between large and small chromosomes of meristematic cells ofVicia faba, at various time-intervals it was obsarved that after irradiation the distribution of aberrations between individual chromosomes is proportional to their total length, whereas the effect of heterologous DNA is mostly in the damage to small chromosomes. It was also found that aftar irradiation mostly chromatid aberrations are formed at shorter time-intervals and only later chromosomal aberrations will appear. On the other hand, heterologous DNA brings about in all time-intervals a predominance of chromatid aberrations.  相似文献   

14.
In this paper we compare the influence of heterologous and isologous DNA on the radiation damage repair of primary root meristematic cells ofVicia faba. Roots, irradiated by exposure of 150 r were cultivated at different time intervals either in tap water, or in a solution of heterologous or isologous DNA. In comparing mitotic activity of meristematic cells it was found that both types of DNA studied enhance the recovery of irradiated cells. The frequency of postmetaphase chromosomal aberrations of irradiated cells was influenced also by post-irradiation action of exogenous DNA. While heterologous DNA exhibited synergical effect with radiation in the sense that it increased the post-irradiation incidence of aberrations in all time intervals studied, isologous DNA had a strong repair effect—the application caused a significant decrease of the percentage of post-metaphase aberrations. Both kinds of DNA caused changes in the relation of chromosome to chromatid aberrations; a higher percentage of chromatid aberrations was registered. The study of the distribution of aberrations between large and small chromosomes ofVicia faba showed that the post-irradiation application of heterologous DNA increases damage of small chromosomes while isologous DNA caused an increased repair ability in this chromosomal group.  相似文献   

15.
Enzymes involved in the repair of damaged DNA   总被引:8,自引:0,他引:8  
The multitude of enzymes responsible for removing damaged nucleotides from DNA in an error-free manner is reviewed. The most direct mechanisms include enzymatically catalyzed photoreversal of cyclobutane dimers and the removal of the O6-methylguanine adduct from alkylated DNA by an enzyme whose presence is dependent on adaptation. The direct removal of either damaged purines or pyrimidines or partial removal of photochemically induced diadducts is catalyzed by DNA glycosylases in the absence of phosphodiester bond hydrolysis. Incision of DNA containing apurinic or apyrimidinic sites arising either spontaneously or by the action of DNA glycosylases is catalyzed by specific endonucleases. The incision of DNA containing bulky adducts is attributed to a multigenically controlled uvr system in Escherichia coli. The mechanisms of damaged nucleotide excision and reinsertion of nucleotides are controlled by unique exonuclease functions in either direct or indirect association with DNA polymerases.  相似文献   

16.
A reconstructed karyotype of Vicia faba with all chromosomes individually distinguishable was treated with triethylene melamine (TEM), cytostasan (CYT) (a new benzimidazol nitrogen mustard), mitomycin C (MI), ethanol (EA) and X-rays. The distribution within chromosomes of induced chromatid abberations was non-random for all agents. The number of segments involved in aberration clustering corresponded to the number of sites representing constitutive heterochromatin, or the regions immediately adjacent to these, as evidenced by the position of Giemsa marker bands. Which of these potential regions of aberration clustering reacted with preferential involvement in aberrations was, in part at least, dependent upon the inducing agent used. It is argued that this may be due to differences in the base composition and/or molecular conformation of heterochromatic regions. Unexpectedly, the distribution pattern of chromatid aberrations induced by mitomycin C was found to be different from those after treatment with the alkylating agents TEM and cytostasan although mitomycin C is assumed to induce aberrations via alkylation. If mitomycin C-induced aberrations are indeed due to alkylation, this indicates that different alkylating agents do not necessarily result in identical patterns of abberation clustering. The other two alkylating agents and ethanol resulted in similar patterns of preferential distribution of abberations. X-Ray induced chromatid aberrations also showed a non-random intrachromosomal distribution, but the clustering was less pronounced than after treatment with the chemical agents.  相似文献   

17.
Many inhibitors of DNA synthesis have been found to induce chromosome aberrations. Our kinetic studies indicate that treatment of cellswith 10?7M aminopterin in the presence of 10?4M glycine, 10?4M hypoxanthine, and 10?4M thymidine allows continued normal cell growth. Omission of thymidine, a treatment which is known to inhibit DNA synthesis while allowing RNA and protein synthesis to continue, leads to cessation of cell growth. Treament of Potorous cell cultures with aminopterin in the presence of hypoxanthine and glycine without thymidine led to the following observations: (1) only non-exchange chromatid aberrations were formed after aminopterin treatment; (2) the aberrations were induced only in cells treated during S, and the breaks were associated with the replicating region of the chromosome; (3) breaks were observed at the first metaphase after the beginning of treatment; and (4) thymidine could reverse the chromosome-breaking action of aminopterin. A model for the molecular mechanism is suggested.  相似文献   

18.
TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18®:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.  相似文献   

19.
A method for isolation of a large amount of a single-stranded DNA fragment   总被引:9,自引:0,他引:9  
Single-stranded DNA inserts can be digested from recombinant phage DNA of M13mp7 with BamHI or EcoRI restriction endonucleases. The single-stranded DNA is satisfactory for DNA sequencing and nuclei acid hybridization.  相似文献   

20.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号