首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rat lymph chylomicrons were treated with Pronase resulting in particles completely devoid of surface apoproteins. On re-incubation with serum, the Pronase-treated chylomicrons re-acquired, by transfer from other lipoproteins, all apoproteins except apoprotein B, which is water-insoluble and non-transferable. When two groups of rats were injected with [3H]cholesterol-labelled control or Pronase-treated chylomicrons, radioactivity was incorporated into the liver of both groups at similar rates. It is concluded that the remnants of the control and Pronase-treated chylomicrons formed in the vascular space were recognized and taken up by liver cells by a process that does not require apoprotein B.  相似文献   

2.
1. Rats pretreated with Triton WR-1339 to prevent the formation of remnants were injected with [3H]cholesterol-labelled remnants, intact chylomicrons or chylomicrons depleted of most of their surface phospholipids by treatment with phospholipase A2. Within 5 min about 80% of the injected label of remnants and phospholipid-depleted chylomicrons was incorporated into the livers compared with less than 10% of the injected radioactivity of intact chylomicrons. A similar rapid hepatic uptake of radioactivity occurred when rats not pretreated with Triton were injected with [3H]cholesterol-labelled phospholipid-depleted chylomicrons. This rapid hepatic uptake of phospholipid-depleted chylomicrons occurred apparently without any alteration in the apoprotein composition of the particles. 2. The participation of hepatocytes in the uptake of remnants and phospholipid-depleted chylomicrons was examined. Both types of particles were taken up by the hepatocytes. However, small chylomicrons (Sf less than 400) were taken up more efficiently than were large chylomicrons (Sf greater than 400), but neither was taken up as efficiently as the remnants. 3. The results of this study lend support to the hypothesis that phospholipid-depleted chylomicrons and chylomicron remnants are taken up by the liver by a similar mechanism, which depends on the loss of surface phospholipids.  相似文献   

3.
Approximately 25% of postprandial retinoid is cleared from the circulation by extrahepatic tissues. Little is known about physiologic factors important to this uptake. We hypothesized that lipoprotein lipase (LpL) contributes to extrahepatic clearance of chylomicron vitamin A. To investigate this, [3H]retinyl ester-containing rat mesenteric chylomicrons were injected intravenously into induced mutant mice and nutritionally manipulated rats. The tissue sites of uptake of 3H label by wild type mice and LpL-null mice overexpressing human LpL in muscle indicate that LpL expression does influence accumulation of chylomicron retinoid. Skeletal muscle from mice overexpressing human LpL accumulated 1.7- to 2.4-fold more 3H label than wild type. Moreover, heart tissue from mice overexpresssing human LpL, but lacking mouse LpL, accumulated less than half of the 3H-label taken up by wild type heart. Fasting and heparin injection, two factors that increase LpL activity in skeletal muscle, increased uptake of chylomicron [3H] retinoid by rat skeletal muscle. Using [3H]retinyl palmitate and its non-hydrolyzable analog retinyl [14C]hexadecyl ether incorporated into Intralipid emulsions, the importance of retinyl ester hydrolysis in this process was assessed. We observed that 3H label was taken up to a greater extent than 14C label by rat skeletal muscle, suggesting that retinoid uptake requires hydrolysis.In summary, for each of our experiments, the level of lipoprotein lipase expression in skeletal muscle, heart, and/or adipose tissue influenced the amount of [3H]retinoid taken up from chylomicrons and/or their remnants.  相似文献   

4.
Chylomicrons labeled with [3H]arachidonic and [14C]linoleic acid were incubated with bovine milk lipoprotein lipase or rat postheparin plasma, containing both lipoprotein lipase and hepatic lipase. During incubation with bovine lipoprotein lipase, [3H]arachidonic acid was released from chylomicron triacylglycerols at a slower rate than [14C]linoleic acid. Only small amounts of [14C]linoleic acid were found as 1,2(2,3)-diacylglycerols, whereas a transient accumulation as [14C]monoacylglycerols was observed. In contrast, significantly more [3H]arachidonic acid was found as 1,2(2,3)-diacylglycerols than as monoacylglycerols at all time intervals investigated. The initial pattern of triacylglycerol hydrolysis by postheparin plasma was similar to that of bovine lipoprotein lipase. However, in contrast to the results obtained with bovine lipoprotein lipase, little [3H]1,2(2,3)-diacylglycerol accumulated. The addition of antiserum to hepatic lipase increased the amount of 3H found in 1,2(2,3)-diacylglycerols and inhibited the formation of free [3H]arachidonic acid. The antiserum also caused a significant inhibition of the hydrolysis of [3H]-but not of [14C]triacylglycerol. With regard to chylomicron phospholipids, the rate of hydrolysis of [14C]linoleoyl phosphatidylcholine with milk lipoprotein lipase was twofold higher than that of the [3H]arachidonyl phosphatidylcholine. However, the hepatic lipase of postheparin plasma had similar activity towards the two phosphatidylcholine species. Postheparin plasma rapidly hydrolyzed chylomicron 3H-labeled and 14C-labeled phosphatidylethanolamine to the same degree, and lipoprotein lipase similarly hydrolyzed 3H-labeled and 14C-labeled phosphatidylethanolamine at approximately equal rates. Antiserum to hepatic lipase inhibited the postheparin plasma hydrolysis of phosphatidylethanolamine and 3H-labeled phosphatidylcholine by about 60%, but the 14C-labeled phosphatidylcholine by only 27%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Apoproteins of chylomicrons, very low density lipoprotein (VLDL), and a low density + high density fraction secreted by proximal and distal rat small intestine into mesenteric lymph were examined during triglyceride (TG) absorption. Apoprotein output and composition were determined and the turnover rates of labeled non-apoB (soluble) apoproteins in lipoprotein fractions were measured after an intraluminal [(3)H]leucine pulse during stable TG transport into lymph. The output of VLDL apoproteins exceeded that of chylomicrons during the absorption of 45 micro mol of TG per hour. More [(3)H]leucine was incorporated into VLDL than into chylomicrons and the decay of newly synthesized VLDL apoproteins was more rapid than that of chylomicrons, in part due to higher concentrations of apoA-I and apoA-IV with a rapid turnover rate. Chylomicrons from proximal intestine contained more apoA-I and less C peptides than chylomicrons from distal intestine. Ninety percent of [(3)H]leucine incorporated into soluble apoproteins was in apoA-I and apoA-IV, but little apoARP was labeled. The turnover rate of apoA-I and apoA-IV differed significantly in the lymph lipoproteins examined. Although total C peptide labeling was small, evidence for intestinal apoC-II formation and differing patterns of apoC-III subunit labeling was obtained. [(3)H]Leucine incorporation and apoprotein turnover rates in lipoprotein secreted by proximal and distal intestine were similar. The different turnover rates of apoA-I and apoA-IV in individual lipoproteins suggest that these A apoproteins are synthesized independently in the intestine.-Holt, P. R., A-L. Wu, and S. Bennett Clark. Apoprotein composition and turnover in rat intestinal lymph during steady-state triglyceride absorption.  相似文献   

6.
The lymphatic absorption of cholesterol and plasma clearance of chylomicrons were investigated in Cu-deficient rats (CuD) fed 0.5 mg Cu/kg diet, as compared with Cu-adequate control rats (CuA) fed 7.5 mg/kg diet. Cholesterol absorption was measured by the 14C-radioactivity appearing in the mesenteric lymph at hourly intervals for 8 hr after an intraduodenal dose of [14C]cholesterol. The plasma clearance of chylomicrons was measured at 3, 6, and 10 min after an intravenous dose of chylomicrons labeled in vivo with [3H]retinyl ester. Cumulative [14C]cholesterol absorption and total lymphatic output of cholesterol were significantly decreased in CuD at 4 hr and thereafter, with no change in percentage distribution of free and esterified cholesterol. Over an 8-hr period, 7.3% of the dose was absorbed by CuD and 9.2% by CuA. When [3H]chylomicrons, obtained from a CuD or CuA donor rat, were injected into CuD and CuA recipient rats, the label was cleared faster in CuD during the first 3 min. At 6 and 10 min, however, no significant difference in percentage clearance of the dose was observed between the groups. The half-life (t1/2) of [3H]chylomicrons and the total 3H-radioactivity taken up by the liver during the entire 10-min period did not differ between the groups, regardless of the source of chylomicrons. The activities of both endothelial lipoprotein lipase (LPL) and hepatic lipase (HL) in postheparin plasma were markedly lower in CuD. As expressed in micromoles fatty acid released/hr/ml plasma, the activities of LPL in CuD and CuA were 32.6 +/- 1.9 and 45.6 +/- 1.3, respectively. A similar magnitude of difference was also observed in HL activity. The data provide evidence that copper deficiency impairs the intestinal transport of cholesterol and the peripheral lipolysis of chylomicrons. The data, however, strongly suggest that the hepatic uptake of chylomicron remnants via the apo-E-dependent mechanism may not be impaired in Cu deficiency.  相似文献   

7.
Metabolism of chylomicron arachidonic and linoleic acid in the rat   总被引:1,自引:0,他引:1  
Chyle and chylomicrons, obtained after feeding thoracic duct cannulated rats [3H]arachidonic (20:4) and [14C]linoleic acid (18:2) in cream, were injected i.v. into recipient animals. 7.5-15 min after injection, the 14C/3H ratio of the triacylglycerols remaining in plasma was about half of that in the injected chylomicrons, indicating that the chylomicron remnants formed retained relatively more [3H]20:4 than [14C]18:2. The 14C/3H ratio of plasma diacylglycerols was about 6-fold lower than that of plasma free fatty acids. The proportion of [3H]20:4 found in plasma cholesteryl esters was several-fold higher than that of [14C]18:2. Inhibition of hepatic lipase by a specific antiserum did not significantly influence the clearance of triacylglycerols, but increased the amount of 3H in plasma diacylglycerols. It also prevented the rapid clearance of phosphatidylethanolamine from plasma. The liver uptake of [3H]20:4 exceeded that of [14C]18:2. Antiserum against hepatic lipase diminished the difference. In contrast, the 14C/3H ratio of adipose tissue was higher than that of the injected chyle lipoproteins.  相似文献   

8.
Fish oil chylomicrons, obtained from mesenteric duct chyle of rats fed [3H]20:5 and [14C]20:4 or [3H]20:5 and [14C]18:2 in a fish oil emulsion, were incubated with human pancreatic lipase-colipase, human carboxyl ester lipase (CEL) and human duodenal contents. With duodenal contents, the triacylglycerols labelled with [3H]20:5 and [14C]20:4 were rapidly converted to free fatty acids (FFA) and monoacylglycerols. Also during incubation with lipase-colipase the [3H]- and [14C]triacylglycerols disappeared completely and at equal rates, but in this case much [3H]20:5 and [14C]20:4 accumulated in diacylglycerols. When CEL was also added, the rate of disappearance of [3H]- and [14C]triacylglycerols increased and the radioactivity of diacylglycerols decreased markedly. During incubation of chylomicrons labelled with [3H]20:5 and [14C]18:2 with lipase-colipase, the rates of hydrolysis of [3H]- and [14C]triacylglycerols were similar, but more [3H]20:5 than [14C]18:2 accumulated in diacylglycerols. The accumulation of [3H]diacylglycerol was reduced by adding CEL. Also when fatty acids were analyzed by gas chromatography, 20:5 was enriched in remaining triacylglycerol and in diacylglycerol after incubation with lipase-colipase alone. The data thus indicate that both lipase-colipase and CEL participate in the hydrolysis of 20:5 and 20:4 ester bonds of dietary triacylglycerol.  相似文献   

9.
The study was undertaken to investigate the metabolic rat of post-lipolysis mesenteric lymph small chylomicrons produced in vitro. Small chylomicrons doubly labeled with [3H]cholesterol (more than 70% in cholesteryl esters) and [14C]palmitate-labeled triglycerides were collected from rat mesenteric lymph during periods of fasting. Lipolysis was performed in vitro with lipoprotein lipase purified from bovine milk. More than 98% of the chylomicron-triglycerides could be hydrolyzed to fatty acids. Post-lipolysis chylomicrons were separated by zonal ultracentrifugation, characterized, and tested for biological behavior in intact rats. Following lipolysis the lipoproteins lost nearly all their triglycerides, apoA-I, and apoC, and were relatively enriched with cholesteryl esters, unesterified cholesterol, phospholipids, and apoB. Three preparations were tested for biological behavior: pooled (total) post-lipolysis chylomicrons (diameter approximately 250 A); particles at the ascending part of the zonal effluent (diameter approximately 300 A), and at the descending part (diameter approximately 200 A). After intravenous injection to intact rats, [3H]cholesteryl ester decay was very rapid with pooled lipoproteins and the 300-A preparation (t1/2 = 5-10 min). The 200-A preparation in contrast stayed in circulation much longer (t1/2 = 60-90 min). The study thus demonstrated metabolic heterogeneity of post-lipolysis small chylomicrons and indicated that some may form an LDL-like subpopulation with a plasma lifetime slower than "remnants" but faster than LDL.  相似文献   

10.
Bovine vascular endothelial cells bind chylomicrons via a high affinity membrane receptor site. Subsequent to binding, the chylomicron apoprotein was neither internalized nor degraded by either sparse or confluent (contact-inhibited) cells. However, the adsorption of chylomicrons was associated with interiorization of chylomicron cholesteryl ester and triglyceride and the hydrolysis of these lipids to free cholesterol and unesterified fatty acids by a lysosome-dependent pathway. This pathway was active in both subconfluent and contact-inhibited cells. The chylomicron free cholesterol so produced inhibited endogeneous cholesterol synthesis measured in terms of the incorporation of [1-14C]-acetate into sterol. An excess of high density lipoprotein was 2- to 3-fold more effective in reducing both binding of chylomicrons and interiorization of chylomicron lipid than was low density lipoprotein. Chylomicron binding was not "down-regulated" by preincubation of the cells with low density lipoprotein or chylomicrons. The results are discussed in the context of cholesterol sources for contact-inhibited endothelial cells which do not interiorize low density lipoprotein cholesterol.  相似文献   

11.
Extracellular acylglycerols are hydrolysed by lipases active at the surface of intact fat cells isolated from rat or human adipose tissue. During short-term incubation, rat fat cells hydrolyse di-[3H]oleyl-[14C]glycerol at a rate of 70 +/- 7.7 mU/10(6) cells (mean +/- S.E.) versus 440 +/- 62 mU/10(6) cells for the hydrolysis of mono-[3H]oleylglycerol; these relatively high lipolytic potencies may serve, among other functions, to counteract the cytolytic effect of both esters. Reaction rates with both substrates are unchanged by addition of various apolipoproteins C and by the nutritional state of the animals. Fat cells incorporate 15-20 per cent of the total [3H]-oleic chains liberated by hydrolysis, with no correlation between uptake and hydrolysis rates. [3H]-oleic chains in cell lipids are found mainly as diacylglycerol (15 per cent) and triacylglycerol (80 per cent). Both lipolytic processes differ from the hydrolysis of trioleylglycerol by cell-bound lipoprotein lipase, which occurs at lower rates (6.5 +/- 0.6 mU/10(6) cells) and depends on apolipoprotein C-II and nutritional state of the animals. The results support the accepted view that lipoprotein lipase and monoacylglycerol lipase are distinct enzymes. Differences between lipoprotein lipase and diacylglycerol lipase activities raise the possibility of different catalytic entities. In conclusion, isolated fat cells in suspension hydrolyse and incorporate lipids. This model should approximate physiological conditions more closely than the use of lipases in the free state.  相似文献   

12.
Tri[14C]acylglycerol-labelled chylomicrons, obtained from cannulated mesenteric lymph of streptozotocin-diabetic donor rats, when intravenously injected into non-diabetic recipient rats, disappeared from the circulation at a significantly slower rate than similarly prepared tri[14C]acylglycerol chylomicrons from non-diabetic donor rats (t1/2, 5.6 +/- 0.7 vs. 3.2 +/- 0.5 min-1, P less than 0.02). The appearance of labelled lipolysis products among plasma lipids (free fatty acid, cholesterol ester and phospholipid fractions) was delayed, indicating decreased availability for lipolysis of the chylomicron-borne triacylglycerol of diabetic origin. Tissue distribution of triacylglycerol, 15 min after the injection of chylomicrons to recipient rats, disclosed a 4-5-fold increase in uptake by muscles (heart and diaphragm) in relation to adipose tissues (epididymal and perirenal sites), in the case of chylomicrons of diabetic derivation. Since a large share of the chylomicron triacylglycerol was taken up by the liver, this tissue was perfused with chylomicron 'remnants' prepared by partial in vitro lipolysis with purified lipoprotein lipase. The 'remnants' of diabetic derivation were taken up by the liver at a 2-3-fold slower rate than those of non-diabetic origin. Chylomicrons derived from diabetic rats were found to be similar in size but markedly depleted of E apolipoproteins as determined by SDS-polyacrylamide gel electrophoresis, isoelectric focussing and a specific immunoassay. Decreases were also seen in A-I apolipoproteins by immunoassay and isoelectric focussing. Chylomicron 'remnants' were also markedly apolipoprotein E-deficient. In vitro incubation of the 'diabetic remnants' with high-density lipoproteins raised their apolipoprotein E content approx. 3-fold and considerably increased their hepatic uptake. Injection of intact chylomicrons preincubated with high-density lipoproteins likewise increased their in vivo removal rate toward the range of that of 'non-diabetic' chylomicrons. We conclude that diabetes-induced changes in the apolipoprotein composition of the chylomicrons and chylomicron remnants play an important role in their removal from the circulation. It appears that their recognition pattern is altered, reducing their ability to interact with receptor sites in the peripheral tissues and the liver, respectively.  相似文献   

13.
The metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one (I), a potent regulator of cholesterol (Chol) metabolism which has significant hypocholesterolemic activity upon oral administration to animals, has been investigated in male rats. After intragastric administration of [2,4-3H] I and [4-14C]Chol in triolein to intestinal lymph duct-cannulated rats, most of the 3H of the lymph was associated with chylomicrons. Most of the 3H in the chylomicrons was associated with fatty acid esters of I and the oleate ester represented the major species of the esters of I. After intravenous injection of the isolated doubly-labeled chylomicrons to intact rats, rapid clearance of 3H and 14C from blood was observed which was associated with a rapid and selective uptake of 3H and 14C by liver. The rate of disappearance of 3H from blood and the rate of uptake of 3H by liver were similar, if not identical, to those for 14C. In contrast, the disappearance of 3H from the liver was much more rapid than that of 14C. Studies of the distribution of 3H in liver demonstrated rapid formation of free I and the formation of [3H]Chol. In addition, significant amounts of the 3H in liver were associated with polar materials, a finding which was not observed in the case of 14C. After intravenous administration of the doubly-labeled chylomicrons to bile duct-cannulated rats, very rapid and substantial metabolism of the administered 3H to polar biliary metabolites was observed. The bulk of the 3H not recovered in bile at 49 h after the injection of the labeled chylomicrons was recovered in blood and tissues and almost all (integral of 94%) of this material was associated with Chol and Chol esters. The combined results indicate an important role for chylomicrons in the overall metabolism of I. The selective delivery of I to liver as its oleate ester in chylomicrons (or, more probably, as chylomicron remnants) and the subsequent metabolism of the oleate ester of I in liver has important consequences with respect to the actions of I which are discussed herein.  相似文献   

14.
1. Rat lymph chylomicrons were exposed to soluble and to immobilized trypsin. This treatment caused no detectable changes in the chylomicron structure or lipid composition, but did result in virtually total depletion of all their tetramethylurea-soluble apoproteins. 2. The capacity of these apoprotein-depleted chylomicrons to act as substrate for lipoprotein lipase in vitro and in situ (i.e. isolated perfused rat heart) was decreased by about 90 and 75% respectively, compared with intact chylomicrons. 3. On incubation with rat plasma high-density lipoproteins, trypsin-treated chylomicrons readily acquired a full apoprotein complement. This resulted in the complete restoration of their capacity to act as substrate for lipoprotein lipase both in vitro and in situ. 4. It is suggested that with the use of try,sin-treated chylomicrons it is now possible for the first time to investigate the physiological role that individual apoproteins play in the catabolism of triacylglycerol-rich lipoproteins by lipoprotein lipase.  相似文献   

15.
Rat apoprotein C-II activated the hydrolysis of triacylglycerol in apoprotein-depleted chylomicrons by lipoprotein lipase in vitro and in the perfused rat heart. Apoproteins C-I and C-III-3 inhibited the hydrolysis of the triacylglycerol moiety in intact and apoprotein C-II-re-activated chylomicrons in vitro, but had no effect on the hydrolysis in situ.  相似文献   

16.
Chylomicrons labeled with [3H]cholesterol and [14C]triglyceride fatty acids were lipolyzed by hepatic lipase (HL) in vitro and then injected intravenously into normal mice fed low- or high-fat diets, and into apolipoprotein (apo) E-deficient mice. In normal mice fed the high-fat diet and injected with non-lipolyzed chylomicrons, the plasma clearance and hepatic uptake of the resulting [3H]cholesterol-labeled remnants was markedly inhibited. In contrast, chylomicrons lipolyzed by HL were taken up equally rapidly by the livers of mice fed the low- and high-fat diets. The removal of non-lipolyzed chylomicrons lacking apoE from the plasma of apoE-deficient mice was inhibited, but not the removal of chylomicrons lipolyzed by HL. Pre-injection of lactoferrin into normal mice inhibited the plasma clearance of both non-lipolyzed chylomicrons and chylomicrons lipolyzed by HL. The removal of HL from the surface of the lipolyzed particles by proteolytic digestion did not affect their rapid uptake, indicating that the hepatic recognition of the lipoproteins was not mediated by HL. These observations support previous findings that phospholipolysis of chylomicrons by hepatic lipase generates remnant particles that are rapidly cleared from circulation by the liver. They also support the concept that chylomicron remnants can be taken up by the liver by an apolipoprotein E-independent mechanism. We hypothesize that this mechanism is modulated by the remnant phospholipids and that it may involve their interaction with a phospholipid-binding receptor on the surface of hepatocytes such as the class B scavenger receptor BI.  相似文献   

17.
The hydrolysis of polyenoic fatty acid ester bonds with pure human colipase-dependent lipase, with carboxyl ester lipase (CEL) and with these enzymes in combination was studied, using [3H]arachidonic- and [14C]linoleic acid-labelled rat chylomicrons as a model substrate. During the hydrolysis with colipase-dependent lipase, the amount of 3H appearing in 1,2-X-diacylglycerol (DG) markedly exceeded that of 14C. When CEL was added in addition this [3H]DG was efficiently hydrolyzed. CEL alone hydrolyzed the triacylglycerol (TG) at a low rate. The hydrolysis pattern with human duodenal content was similar to that seen with colipase-dependent lipase and CEL in combination. Increasing the concentration of taurodeoxycholate (TDC) and taurocholate (TC) or of TDC alone stimulated the hydrolysis of [3H]- and [14C]TG, but increased the accumulation of labelled DG that could act as substrate for CEL. It is suggested that very-long-chain polyenoic fatty acids of DG formed during the action of the colipase-dependent lipase on TG containing these fatty acids may be a physiological substrate for CEL.  相似文献   

18.
Mink homozygous for the mutation Pro214Leu in lipoprotein lipase (LPL) had only traces of LPL activity but amounts of LPL protein in their tissues similar to those of normal mink. In normal mink, lymph chylomicrons from rats given [3H]retinol (incorporated into retinyl esters, providing a core label) and [14C]oleic acid (incorporated mainly in triglycerides (TG)) were rapidly cleared from the circulation. In the homozygous mink, clearance was much retarded. The ratio of TG to core label in plasma did not decrease and much less [14C]oleic acid appeared in plasma. Still, half of the labeled material disappeared from the circulating blood within 30;-40 min and the calculated total turnover of TG in the hypertriglyceridemic mink was almost as large as in normal mink. The core label was distributed to the same tissues in hypertriglyceridemic mink as in normal mink. Half to two-thirds of the cleared core label was in the liver. The large difference was that in the hypertriglyceridemic mink, TG label (about 40% of the total amount removed) followed the core label to the liver and there was no preferential uptake of TG over core label in adipose or muscle tissue. In normal mink, only small amounts of TG label (<10%) appeared in the liver, while most was in adipose and muscle tissues. Apolipoprotein B-48 dominated in the accumulated TG-rich lipoproteins in blood of hypertriglyceridemic mink, even in fasted animals.  相似文献   

19.
The transfer of free cholesterol from [3H]cholesterol-labelled plasma lipoproteins to cultured human lung fibroblasts was studied in a serum-free medium. The uptake of [3H]cholesterol depended upon time of incubation, concentration of lipoprotein in the medium, and temperature. Modified (reduced and methylated) low-density lipoprotein (LDL), which did not enter the cells by the receptor pathway, gave a somewhat lower transfer rate than unmodified LDL, but if the transfer values for native LDL were corrected for the receptor-mediated uptake of cholesterol the difference was eliminated. The initial rates of transfer of [3H]cholesterol from LDL and high-density lipoprotein (HDL) were of the same order of magnitude (0.67 +/- 0.05 and 0.75 +/- 0.06 nmol of cholesterol/h per mg of cell protein, respectively) while that from very-low-density lipoprotein (VLDL) was much lower (0.23 +/- 0.02 nmol of cholesterol/h per mg) (means +/- S.D., n = 5). The activation energy for transfer of cholesterol from reduced, methylated LDL to fibroblasts was determined to be 57.5 kJ/mol. If albumin was added to the incubation medium the transfer of [3H]cholesterol was enhanced, while that of [14C]dipalmitoyl phosphatidylcholine was decreased compared with the protein-free system. The results demonstrate that, in spite of its low water solubility, free cholesterol can move from lipoproteins to cellular membranes, probably by aqueous diffusion. We propose that physicochemical transfer of free cholesterol may be a significant mechanism for net uptake of the sterol into the artery during atherogenesis.  相似文献   

20.
1. Human mesenteric lymph chylomicrons were isolated from chylous ascites fluid by ultra-centrifugation and agarose/gel chromatography and their apoprotein composition was analysed by dodecylsulfate/polyacrylamide gel electrophoresis, analytical isoelectric focusing and immuno-chemically. Major components of mesenteric lymph chylomicrons were apoprotein A-I, proteins of Mr less than 15 000 including the C-group apoproteins and a protein of Mr 46 000. Minor components were apoprotein E and a protein of Mr approximately equal to 200 000 (B-like protein). This apoprotein composition was qualitatively identical with that of chylomicrons from intestinal lymph of the rat, but was distinctly different from plasma chylomicrons of humans with fasting chylomicronaemia. 2. The protein of Mr approximately equal to 46 000 has been isolated by preparative dodecylsulfate/polyacrylamide gel electrophoresis from human and rat lymph chylomicrons and was compared to a protein of identical Mr present in rat high-density lipoproteins (apoplipoprotein A-IV) and in the rho less than 1.006 g/ml serum lipoprotein fraction of individual humans with alimentary hypertriglyceridaemia. In both species the 46 000-Mr proteins isolated from lymph and serum were identical according to amino acid composition and isoelectric point in 6 M urea. The human proteins from both sources were also immunologically identical. The similarities in the molecular properties of the human apolipoprotein and rat apolipoprotein A-IV indicate that these proteins are homologous. 3. Plasma levels of human apolipoprotein A-IV determined by electroimmunodiffusion were 14.15 +/- 3.66 mg/100 ml (n = 59), but greater than 90% of the protein was unassociated with the major lipoprotein fractions. It is concluded, that apolipoprotein A-IV is a main protein component of human lymph chylomicrons, that is removed from the particles in the plasma compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号