首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytolytic CD8+ effector cells fall into two subpopulations based on cytokine secretion. Type 1 CD8+ T cells (Tc1) secrete IFN-gamma, whereas type 2 CD8+ T cells (Tc2) secrete IL-4, IL-5, and IL-10. Using an OVA-transfected B16 lung metastases model, we assessed the therapeutic effects of adoptively transferred OVA-specific Tc1 and Tc2 subpopulations in mice bearing established pulmonary malignancy. Effector cell-treated mice exhibiting high (5 x 105) tumor burdens experienced significant (p < 0.05) delays in mortality compared with those of untreated control mice, whereas high proportions (70-90%) of mice receiving therapy with low (1 x 105) tumor burdens survived indefinitely. Long-term tumor immunity was evident by resistance to lethal tumor rechallenge, heightened levels of systemic OVA Ag-specific CTL responses ex vivo, and detection of long-lived TCR transgene-positive donor cells accompanied by an elevation in the total numbers of CD8+ CD44high activated and/or memory T cells at sites of tumor growth. Long-lasting protection by Tc2 and Tc1 effector cells were dependent, in part, on both the level of tumor burden and effector cell-derived IL-4, IL-5, and IFN-gamma, respectively. We conclude that Tc1 and Tc2 effector cells provide immunity by different mechanisms that subsequently potentiate host-derived antitumor responses.  相似文献   

2.
Infections with high doses of intestinal nematodes result in protective immunity based on robust type 2 responses in most mouse lines under laboratory conditions. Here, we report on cellular responses of wild house mice from northern Germany. We detected robust Th1 responses in wild house mice naturally infected with the whipworm Trichuris muris. In contrast, mice infected with pinworms (Syphacia, Aspiculuris) reported type-2 activity by elevated IgG1 levels and eosinophil counts, but also harbored high frequencies of Foxp3+ regulatory T cells, suggesting that natural whip- and pinworm infections induce distinct immunoregulatory as well as effector profiles.  相似文献   

3.
Dendritic cells (DC) are professional APC that control the balance between T cell immunity and tolerance. Genetic engineering of DC to regulate the outcome of the immune response is an area of intense research. Galectin (gal)-1 is an endogenous lectin that binds to glycoproteins and exerts potent regulatory effects on T cells. Consequently, gal-1 participates in central deletion of thymocytes and exerts therapeutic effects on experimental models of T cell-mediated autoimmune disorders and graft-vs-host disease. Together, these observations strongly indicate that engineering DC to express transgenic (tg) gal-1 may be beneficial to treat T cell-mediated disorders. In this study, we have investigated the impact of the expression of high levels of tg gal-1 on maturation/activation of DC and on their T cell stimulatory function. Murine DC were transduced with a recombinant adenovirus encoding hu gal-1 (gal-1-DC). Tg gal-1 was exported by a nonclassical pathway through exosomes and was retained on the DC surface inducing segregation of its ligand CD43. Expression of tg gal-1 triggered activation of DC determined by induction of a more mature phenotype, increased levels of mRNA for proinflammatory cytokines, and enhanced ability to stimulate naive T cells. Conversely, gal-1-DC induced rapid apoptosis of activated T cells. In vivo, gal-1-DC increased significantly the sensitization phase of contact hypersensitivity assays while inducing a drastic inhibition of the elicitation phase by triggering apoptosis of activated T cells in the dermis. Gal-1-DC represent a novel tool to control differentially the afferent and efferent arms of the T cell response.  相似文献   

4.
Development of effective vaccination approaches to treat established tumors represents a focus of intensive research because such approaches offer the promise of enhancing immune system priming against tumor Ags via restimulation of pre-existing (memory) antitumoral helper and effector immune cells. However, inhibitory mechanisms, which function to limit the recall responses of tumor-specific immunity, remain poorly understood and interfere with therapies anticipated to induce protective immunity. The mouse renal cell carcinoma (RENCA) tumor model was used to investigate variables affecting vaccination outcomes. We demonstrate that although a whole cell irradiated tumor cell vaccine can trigger a functional antitumor memory response in the bone marrows of mice with established tumors, these responses do not culminate in the regression of established tumors. In addition, a CD103+ regulatory T (Treg) cell subset accumulates within the draining lymph nodes of tumor-bearing mice. We also show that B7-H1 (CD274, PD-L1), a negative costimulatory ligand, and CD4+ Treg cells collaborate to impair the recall responses of tumor-specific memory T cells. Specifically, mice bearing large established RENCA tumors were treated with tumor cell vaccination in combination with B7-H1 blockade and CD4+ T cell depletion (triple therapy treatment) and monitored for tumor growth and survival. Triple treatment therapy induced complete regression of large established RENCA tumors and raised long-lasting protective immunity. These results have implications for developing clinical antitumoral vaccination regimens in the setting in which tumors express elevated levels of B7-H1 in the presence of abundant Treg cells.  相似文献   

5.
6.
Summary The combination of concanavalin A-bound, but not concanavalin A-free, L1210 murine leukemia vaccine and pyran copolymer produced an enhanced therapeutic response in L1210-bearing mice. Immunoprophylactic experiments showed that the effective combination produced enhanced antitumor immunity as determined by refractoriness to the inoculation of live L1210 cells. In vitro antiproliferation and intraperitoneal adoptive transfer tests showed that antitumor effector cells were detected in the spleen and peritoneal cavity of primed mice after, but not before, live L1210 cell inoculation. These effector cells were identified as T cells on the basis of their non-adherence to plastic flasks and sensitivity to treatment with anti-mouse brain-associated T cell antigen antisera and complement. Although non-T cell populations, including macrophages of mice primed with L1210 vaccine and pyran copolymer, inhibited the in vitro proliferation of L1210 cells, we obtained evidence suggesting that they were not the primary antitumor effector cell populations responsible for the in vivo elimination of the inoculated L1210 cells.  相似文献   

7.
Thalidomide and its novel T cell costimulatory analogs (immunomodulatory drugs) are currently being assessed in the treatment of patients with advanced cancer. However, neither tumor-specific T cell costimulation nor effective antitumor activity has been demonstrated in vivo. In this study, we assessed the ability of an immunomodulatory drug (CC-4047/ACTIMID) to prime a tumor-specific immune response following tumor cell vaccination. We found that the presence of CC-4047 during the priming phase strongly enhanced antitumor immunity in the vaccinated group, and this correlated with protection from subsequent live tumor challenge. Protection was associated with tumor-specific production of IFN-gamma and was still observed following a second challenge with live tumor cells 60 days later. Furthermore, CD8(+) and CD4(+) splenocyte fractions from treated groups secreted increased IFN-gamma and IL-2 in response to tumor cells in vitro. Coculture of naive splenocytes with anti-CD3 mAb in the presence of CC-4047 directly costimulated T cells and increased Th1-type cytokines. Our results are the first to demonstrate that a costimulatory thalidomide analog can prime protective, long-lasting, tumor-specific, Th1-type responses in vivo and further support their ongoing clinical development as novel anti-cancer agents.  相似文献   

8.
Using in vivo selection methods, we obtained metastatic sublines of the murine RAW117 large cell lymphoma that form multiple liver metastases. The highly metastatic subline RAW117-H10 has a low number of gp70 molecules expressed at the cell surface and low cytostatic sensitivity to activated syngeneic macrophages. This subline was infected with endogenous RNA tumor virus isolated from a high virus-expressing RAW117-P subline of low metastatic potential. After superinfection the H10 subline gradually increased its expression of cell surface gp70 and showed enhanced sensitivity to macrophage-mediated cytostasis, suggesting that gp70 might be involved in host macrophage-mediated surveillance. Culture of RAW117-P and H10 cells in media conditioned by activated macrophages indicated that parental cells are severely growth inhibited in a dose dependent fashion while H10 cells showed almost no effect. Examination of differentially expressed genes in the highly metastatic RAW117-H10 cells by analysis of RNA blots indicated that a mitochondrial gene was expressed at a level that was approximately 10 times higher in H10 cells than in parental cells. This gene was identified as ND5, which codes for a subunit of NADH dehydrogenase (complex I of the mitochondrial electron transport chain); this complex is the target for an activated macrophage-released cytostatic factor. Among other possibilities, the results are consistent with the suggestion that highly metastatic RAW117 cells may escape macrophage surveillance by decreasing the synthesis of specific cell-surface receptors for cytostatic molecules and increasing the synthesis of specific cellular targets for such molecules.  相似文献   

9.
Type 2 innate lymphoid cells (ILC2s) have multiple functions that can respond to allergic diseases, parasite infection, metabolic homeostasis, tissue repair, and adipose metabolism homeostasis. In these diseases, ILC2s can be activated by various inflammatory cytokines released by damaged cells. Activated ILC2s produce different type 2 cytokines, including interleukin (IL)-4, IL-5, IL-9, and IL-13, which involved in the pathogenesis of many diseases. In recent years, the relationship between ILC2s and tumor diseases has attracted more and more attention. The role of ILC2s in tumor immunity depends on its surface molecules and cytokine context. This review aims to conclude tumorigenic and antitumorigenic roles of ILC2s, and the characters of ILC2s-related cytokines in tumor diseases to provide a comprehensive overview of the impact of ILC2s in tumor immunity.  相似文献   

10.
CD8 T cell-mediated immune responses fall into two distinct types based on effector cell-derived cytokine production. Type I CD8 T cells (Tc1) produce IFN-gamma, whereas type 2 cells (Tc2) secrete IL-4, IL-5, IL-10, and GM-CSF. Using a murine TCR transgenic T cell/breast tumor model, we show that adoptively transferred Ag-specific Tc1 cells are more effective in delaying mammary tumor growth and progression than that of functionally distinct Tc2 cells. Donor Tc1 cells administered 7 days posttumor challenge localized and persisted at sites of primary tumor growth with antitumor responses that were dependent, in part, on effector cell-derived IFN-gamma. Tc1-mediated responses markedly enhanced the appearance and local accumulation of highly differentiated (CD44(high)) CD4 and CD8 endogenous tumor-infiltrating T cells when compared with that of untreated tumor-bearing mice. Conversely, Tc1 cell transfer markedly delayed the appearance of corresponding nondifferentiated (CD44(low)) endogenous T cells. Such cells were acutely activated as defined by coexpression of surface markers associated with TCR engagement (CD69) and early T cell activation (CD25). Moreover, cellular response kinetics appeared to further correlate with the up-regulation of endogenous T cells producing the chemokine IFN-gamma-inducible protein-10 in vivo. This suggested that CD8-mediated type 1 antitumor responses cannot only promote accumulation of distinct endogenous CD4 and CD8 T cell subpopulations, but also facilitate and preferentially modulate their localization kinetics, persistence, states of activation/differentiation, and function within the primary tumor environment at various stages of tumor progression. These studies offer insight into potential mechanisms for enhancing T cell-based immunotherapy in breast cancer.  相似文献   

11.
Molecularly defined vaccine formulations capable of inducing antiviral CD8+ T-cell-specific immunity in a manner compatible with human delivery are limited. Few molecules achieve this target without the support of an appropriate immunological adjuvant. In this study, we investigate the potential of totally synthetic palmitoyl-tailed helper-cytotoxic-T-lymphocyte chimeric epitopes (Th-CTL chimeric lipopeptides) to induce herpes simplex virus type 1 (HSV-1)-specific CD8+ T-cell responses. As a model antigen, the HSV-1 glycoprotein B498-505 (gB498-505) CD8+ CTL epitope was synthesized in line with the Pan DR peptide (PADRE), a universal CD4+ Th epitope. The peptide backbone, composed solely of both epitopes, was extended by N-terminal attachment of one (PAM-Th-CTL), two [(PAM)2-Th-CTL], or three [(PAM)3-Th-CTL] palmitoyl lysines and delivered to H2b mice in adjuvant-free saline. Potent HSV-1 gB498-505-specific antiviral CD8+ T-cell effector type 1 responses were induced by each of the palmitoyl-tailed Th-CTL chimeric epitopes, irrespective of the number of lipid moieties. The palmitoyl-tailed Th-CTL chimeric epitopes provoked cell surface expression of major histocompatibility complex and costimulatory molecules and production of interleukin-12 and tumor necrosis factor alpha proinflammatory cytokines by immature dendritic cells. Following ocular HSV-1 challenge, palmitoyl-tailed Th-CTL-immunized mice exhibited a decrease of virus replication in the eye and in the local trigeminal ganglion and reduced herpetic blepharitis and corneal scarring. The rational of the molecularly defined vaccine approach presented in this study may be applied to ocular herpes and other viral infections in humans, providing steps are taken to include appropriate Th and CTL epitopes and lipid groups.  相似文献   

12.
Progressive growth of the P815 mastocytoma in an immunocompetent host evokes the generation of an antitumor immune response that can be measured in terms of the production of cytolytic Ly-1+2+ T cells in the draining lymph node and spleen. This immunity, designated concomitant immunity, is present on day 6 of tumor growth, peaks on day 9, and decays progressively thereafter. It fails to develop in mice made T cell deficient by thymectomy and lethal whole-body gamma-radiation, and reconstituted with syngeneic bone marrow cells (TXB mice). Employment of a mouse survival assay, capable of enumerating metastatic P815 cells in cell suspensions, showed that the P815 tumor metastasizes to the draining lymph node and spleen at the same rate in normal and TXB mice for the first 6 days of growth of an intradermal P815 tumor. By day 6 of tumor growth there were approximately 10(3) P815 cells in the draining lymph node in both types of mice. However, during the generation of concomitant immunity between days 6 and 9, the number of metastatic P815 cells in the draining lymph nodes and spleens of normal tumor-bearing mice declined by nearly 90%. After day 12, however, the number of tumor cells in the nodes and spleens increased concordantly with the decay of concomitant immunity. These findings, together with the demonstration that T cell-deficient mice failed to restrain the number of metastatic P815 cells in the draining lymph node and spleen, suggest that concomitant immunity is an important defense mechanism against the development of systemic disease. Additional evidence consistent with this interpretation was provided by studies which showed that adoptive immunization with spleen cells from concomitant immune donors significantly prolonged the median survival time of TXB tumor-bearing mice by destroying a substantial proportion of P815 tumor cells already seeded in the draining lymph node. Adoptive immunization also delayed the appearance of metastatic tumor cells in the spleen.  相似文献   

13.
Topoisomerase II alpha (Top2α) is an attractive candidate to be used as a tumor antigen for cancer immunotherapy, because it is abundantly expressed in various tumors and serves as a target for a number of chemotherapeutic agents. In this study, we demonstrated the immunogenicity of Top2α, using dendritic cells (DC) electroporated with RNA encoding the Top2α C-terminus (Top2αCRNA/DC). Top2αCRNA/DC were able to demonstrate in vitro stimulation of T cells from mice that were previously vaccinated with Top2α-expressing tumor lysate-pulsed DC. Vaccination with Top2αCRNA/DC induced Top2α-specific T cell responses in vivo as well as antitumor effects in various murine tumor models including MC-38, B16F10, and GL26. DC pulsed with p1327 (DSDEDFSGL), defined as an epitope presented by H-2Kb, also induced Top2α-specific immune responses and antitumor effects. Based on these data, Top2α is suggested to be a universal target for cancer immunotherapy.  相似文献   

14.
Infectious and inflammatory diseases in the intestine remain a serious threat for patients world-wide. Reprogramming of the intestinal epithelium towards a protective effector state is important to manage inflammation and immunity and can be therapeutically targeted. The role of epigenetic regulatory enzymes within these processes is not yet defined. Here, we use a mouse model that has an intestinal-epithelial specific deletion of the histone demethylase Lsd1 (cKO mice), which maintains the epithelium in a fixed reparative state. Challenge of cKO mice with bacteria-induced colitis or a helminth infection model both resulted in increased pathogenesis. Mechanistically, we discovered that LSD1 is important for goblet cell maturation and goblet-cell effector molecules such as RELMß. We propose that this may be in part mediated by directly controlling genes that facilitate cytoskeletal organization, which is important in goblet cell biology. This study therefore identifies intestinal-epithelial epigenetic regulation by LSD1 as a critical element in host protection from infection.  相似文献   

15.
Failure of immune surveillance related to inadequate host antitumor immune responses has been suggested as a possible cause of the high incidence of recurrence and poor overall survival outcome of hepatocellular carcinoma. The stress-induced heat shock proteins (HSPs) are known to act as endogenous "danger signals" that can improve tumor immunogenicity and induce natural killer (NK) cell responses. Exosome is a novel secretory pathway for HSPs. In our experiments, the immune regulatory effect of the HSP-bearing exosomes secreted by human hepatocellular carcinoma cells under stress conditions on NK cells was studied. ELISA results showed that the production of HSP60, HSP70, and HSP90 was up-regulated in both cell lines in a stress-specific manner. After exposure to hepatocellular carcinoma cell-resistant or sensitive anticancer drugs (hereafter referred to as "resistant" or "sensitive" anticancer drug), the membrane microvesicles were actively released by hepatocellular carcinoma cells, differing in their ability to present HSPs on the cell surface, which were characterized as exosomes. Acting as a decoy, the HSP-bearing exosomes efficiently stimulated NK cell cytotoxicity and granzyme B production, up-regulated the expression of inhibitory receptor CD94, and down-regulated the expression of activating receptors CD69, NKG2D, and NKp44. Notably, resistant anticancer drugs enhanced exosome release and generated more exosome-carried HSPs, which augmented the activation of the cytotoxic response. In summary, our findings demonstrated that exosomes derived from resistant anticancer drug-treated HepG2 cells conferred superior immunogenicity in inducing HSP-specific NK cell responses, which provided a clue for finding an efficient vaccine for hepatocellular carcinoma immunotherapy.  相似文献   

16.
The development of a human immunodeficiency virus type 1 (HIV-1) vaccine that elicits potent cellular and humoral immune responses recognizing divergent strains of HIV-1 will be critical for combating the global AIDS epidemic. The present studies were initiated to examine the magnitude and breadth of envelope (Env)-specific T-lymphocyte and antibody responses generated by vaccines containing either a single or multiple genetically distant HIV-1 Env immunogens. Rhesus monkeys were immunized with DNA prime-recombinant adenovirus boost vaccines encoding a Gag-Pol-Nef polyprotein in combination with either a single Env or a mixture of clade-A, clade-B, and clade-C Envs. Monkeys receiving the multiclade Env immunization developed robust immune responses to all vaccine antigens and, importantly, a greater breadth of Env recognition than monkeys immunized with vaccines including a single Env immunogen. All groups of vaccinated monkeys demonstrated equivalent immune protection following challenge with the pathogenic simian-human immunodeficiency virus 89.6P. These data suggest that a multicomponent vaccine encoding Env proteins from multiple clades of HIV-1 can generate broad Env-specific T-lymphocyte and antibody responses without antigenic interference. This study demonstrates that it is possible to generate protective immune responses by vaccination with genetically diverse isolates of HIV-1.  相似文献   

17.
 In the present study we describe a novel murine tumor model in which the highly malignant murine B cell lymphoma 38C13 has been transduced with the cDNA encoding human tumor-associated antigen HER2/neu. This new cell line (38C13-HER2/neu) showed stable surface expression but not secretion of human HER2/neu. It also maintained expression of the idiotype (Id) of the surface immunoglobulin of 38C13, which serves as another tumor-associated antigen. Surprisingly, spontaneous tumor regression was observed following s.c. but not i.v. injection of 38C13-HER2/neu cells in immunocompetent syngeneic mice. Regression was more frequently observed with larger tumor cell challenges and was mediated through immunological mechanisms because it was not observed in syngeneic immunodeficient mice. Mice that showed complete tumor regression were immune to challenge with the parental cell line 38C13 and V1, a variant of 38C13 that does not express the Id. Immunity could be transferred with sera, suggesting that an antibody response mediated rejection and immunity. Continuously growing s.c. tumors as well as metastatic tumors obtained after the i.v. injection of 38C13-HER2/neu maintained expression of human HER2/neu, which can serve as a target for active immunotherapy. As spontaneous tumor regression has not been observed in other human murine models expressing human HER2/neu, our results illustrate the enormous differences that can exist among different murine tumors expressing the same antigen. The present model provides a useful tool for the study of the mechanisms of protective immunity to B cell lymphoma and for the evaluation of different therapeutic approaches based on the stimulation or suppression of the immune response. Received: 2 August 2000 / Accepted: 20 September 2000  相似文献   

18.
INTRODUCTION: Transduction of the granulocyte-macrophage colony stimulating factor (GM-CSF) gene into mouse tumor cells abrogates their tumorigenicity in vivo. Our previous report demonstrated that gene transduction of GM-CSF with either TARC or RANTES chemokines suppressed in vivo tumor formation. In this paper, we examined whether the addition of either recombinant TARC or RANTES proteins to irradiated GM-CSF-transduced tumor vaccine cells enhanced antitumor immunity against established mouse tumor models to examine its future clinical application. MATERIALS AND METHODS: Three million irradiated WEHI3B cells retrovirally transduced with murine GM-CSF cDNA in combination with either recombinant TARC or RANTES were subcutaneously inoculated into syngeneic WEHI3B-preestablished BALB/c mice. RESULTS: Vaccinations were well tolerated. Mice treated with GM-CSF-transduced cells and the chemokines demonstrated significantly longer survival than mice treated with GM-CSF-transduced cells alone. Splenocytes harvested from mice treated with the former vaccines produced higher levels of IL-4, IL-6, IFN-gamma, and TNF-alpha, suggesting enhanced innate and adaptive immunity. Immunohistochemical analysis of tumor sections after vaccination revealed a more significant contribution of CD4+ and CD8+ T cells to tumor repression in the combined vaccine groups than controls. CONCLUSIONS: TARC and RANTES enhance the immunological antitumor effect induced by GM-CSF in mouse WEHI3B tumor models and may be clinically useful.  相似文献   

19.
Little is known about the consequences of immune recognition of mutated gene products, despite their potential relevance to autoimmunity and tumor immunity. To identify mutations that induce immunity, here we have developed a systematic approach in which combinatorial DNA libraries encoding large numbers of random mutations in two syngeneic tyrosinase-related proteins are used to immunize black mice. We show that the libraries of mutated DNA induce autoimmune hypopigmentation and tumor immunity through cross-recognition of nonmutated gene products. Truncations are present in all immunogenic clones and are sufficient to elicit immunity to self, triggering recognition of normally silent epitopes. Immunity is further enhanced by specific amino acid substitutions that promote T helper cell responses. Thus, presentation of a vast repertoire of antigen variants to the immune system can enhance the generation of adaptive immune responses to self.  相似文献   

20.
A mouse survival assay was evaluated for its suitability to enumerate metastatic P815 tumor cells in the draining lymph node and spleen of a B6D2 F1 (H-2b X H-2d) host bearing a primary intradermal P815 tumor. The mouse survival assay is based on the linear relationship between the log10 number of P815 tumor cells (H-2d) injected i.p. into mice and their mean survival time. It was found that the assay is capable of quantifying as few as 10 tumor cells in lymph node and spleen, but only if cell suspensions of these organs are treated with anti-H-2b serum and complement, in order to selectively destroy H-2bd host cells. This was necessary because host cells from the lymph node and spleen of a tumor-bearing host possessed antitumor functions, in that they were capable of destroying the H-2d P815 tumor cells when admixed with the tumor cells and injected i.p. into 800-rad irradiated test recipients. The kinetics of acquisition and loss of host cells with antitumor function and the Ly phenotype of these host cells suggest that they are the same cells that give the tumor-bearing host the capacity to express concomitant immunity against a tumor implant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号