首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (K(M)) and nearly four-fold greater catalytic rate (k(cat)). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in k(cat) at the expense of a 3% loss of substrate affinity (increase in apparent K(M) for glucose) resulting in a specify constant (k(cat)/K(M)) of 23.8 (mM(-1) · s(-1)) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM(-1) · s(-1), respectively. The thermal stability of these mutants was also measured and showed moderate improvement over the parental strain.  相似文献   

2.
We describe here a new enzyme-coupled assay for the quantitation of d-xylose using readily available enzymes that allows kinetic evaluation of hemicellulolytic enzymes using natural xylooligosaccharide substrates. Hydrogen peroxide is generated as an intermediary analyte, which allows flexibility in the choice of the chromophore or fluorophore used as the final reporter. Thus, we present d-xylose quantitation results for solution-phase assays performed with both the fluorescent reporter resorufin, generated from N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), whose corresponding radical cation has an absorbance maximum at approximately 400 nm. We also describe a useful solid-phase variation of the assay performed with the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride, which produces an insoluble brown precipitate. In addition, kinetic parameters for hydrolysis of the natural substrates xylobiose and xylotriose were obtained using this assay for a glycosyl hydrolase family 39 beta-xylosidase from Thermoanaerobacterium sp. strain JW/SL YS485 (Swiss-Prot accession no. O30360). At higher xylobiose substrate concentrations the enzyme showed an increase in the rate indicative of transglycosylation, while for xylotriose marked substrate inhibition was observed. At lower xylobiose concentrations k(cat) was 2.7 +/- 0.4 s(-1), K(m) was 3.3 +/- 0.7 mM, and k(cat)/K(m) was 0.82 +/- 0.21 mM(-1) . s(-1). Nonlinear curve fitting to a substrate inhibition model showed that for xylotriose K(i) was 1.7 +/- 0.1 mM, k(cat) was 2.0 +/- 0.1 s(-1), K(m) was 0.144 +/- 0.011 mM, and k(cat)/K(m) was 14 +/- 1.3 mM(-1) . s(-1).  相似文献   

3.
Canavan disease is an autosomal-recessive neurodegenerative disorder caused by a lack of aspartoacylase, the enzyme that degrades N-acetylaspartate (NAA) into acetate and aspartate. With a view to studying the mechanisms underlying the action of human aspartoacylase (hASP), this enzyme was expressed in a heterologous Escherichia coli system and characterized. The recombinant protein was found to have a molecular weight of 36 kDa and kinetic constants K(m) and k(cat) of 0.20 +/- 0.03 mM and 14.22 +/- 0.48 s(-1), respectively. Sequence alignment showed that this enzyme belongs to the carboxypeptidase metalloprotein family having the conserved motif H(21)xxE(24)(91aa)H(116). We further investigated the active site of hASP by performing modelling studies and site-directed mutagenesis. His21, Glu24 and His116 were identified here for the first time as the residues involved in the zinc-binding process. In addition, mutations involving the Glu178Gln and Glu178Asp residues resulted in the loss of enzyme activity. The finding that wild-type and Glu178Asp have the same K(m) but different k(cat) values confirms the idea that the carboxylate group contributes importantly to the enzymatic activity of aspartoacylase.  相似文献   

4.
Yang X  Ma K 《Journal of bacteriology》2007,189(8):3312-3317
An NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima was purified. The enzyme was very active in catalyzing the reduction of oxygen to hydrogen peroxide with an optimal pH value of 7 at 80 degrees C. The V(max) was 230 +/- 14 mumol/min/mg (k(cat)/K(m) = 548,000 min(-1) mM(-1)), and the K(m) values for NADH and oxygen were 42 +/- 3 and 43 +/- 4 muM, respectively. The NADH oxidase was a heterodimeric flavoprotein with two subunits with molecular masses of 54 kDa and 46 kDa. Its gene sequences were identified, and the enzyme might represent a new type of NADH oxidase in anaerobes. An NADH-dependent peroxidase with a specific activity of 0.1 U/mg was also present in the cell extract of T. maritima.  相似文献   

5.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

6.
A newly isolated bacterium, Cohnella laevoribosii RI-39, could grow in a defined medium with L-ribose as the sole carbon source. A 21-kDa protein isomerizing L-ribose to L-ribulose, as well as D-lyxose to D-xylulose, was purified to homogeneity from this bacterium. Based on the N-terminal and internal amino acid sequences of the purified enzyme obtained by N-terminal sequencing and quantitative time of flight mass spectrometry-mass spectrometry analyses, a 549-bp gene (lyxA) encoding D-lyxose (L-ribose) isomerase was cloned and expressed in Escherichia coli. The purified endogenous enzyme and the recombinant enzyme formed homodimers that were activated by Mn(2+). C. laevoribosii D-lyxose (L-ribose) isomerase (CLLI) exhibits maximal activity at pH 6.5 and 70 degrees C in the presence of Mn(2+) for D-lyxose and L-ribose, and its isoelectric point (pI) is 4.2 (calculated pI, 4.9). The enzyme is specific for D-lyxose, L-ribose, and D-mannose, with apparent K(m) values of 22.4 +/- 1.5 mM, 121.7 +/- 10.8 mM, and 34.0 +/- 1.1 mM, respectively. The catalytic efficiencies (k(cat)/K(m)) of CLLI were 84.9 +/- 5.8 mM(-1) s(-1) for D-lyxose (V(max), 5,434.8 U mg(-1)), 0.2 mM(-1) s(-1) for L-ribose (V(max), 75.5 +/- 6.0 U mg(-1)), and 1.4 +/- 0.1 mM(-1) s(-1) for D-mannose (V(max), 131.8 +/- 7.4 U mg(-1)). The ability of lyxA to permit E. coli cells to grow on D-lyxose and L-ribose and homology searches of other sugar-related enzymes, as well as previously described sugar isomerases, suggest that CLLI is a novel type of rare sugar isomerase.  相似文献   

7.
We report the expression, purification, and characterization of L-asparaginase (AnsA) from Rhizobium etli. The enzyme was purified to homogeneity in a single-step procedure involving affinity chromatography, and the kinetic parameters K(m), V(max), and k(cat) for L-asparagine were determined. The enzymatic activity in the presence of a number of substrates and metal ions was investigated. The molecular mass of the enzyme was 47 kDa by SDS-PAGE. The enzyme showed a maximal activity at 50 degrees C, but the optimal temperature of activity was 37 degrees C. It also showed maximal and optimal activities at pH 9.0. The values of K(m), V(max), k(cat), and k(cat)/K(m) were 8.9 +/- 0.967 × 10?3 M, 128 +/- 2.8 U/mg protein, 106 +/- 2 s?1, and 1.2 +/- 0.105 × 10? M?1s?1, respectively. The L-asparaginase activity was reduced in the presence of Mn2?, Zn2?, Ca2?, and Mg2? metal ions for about 52% to 31%. In addition, we found that NH??, L-Asp, D-Asn, and beta-aspartyl-hydroxamate in the reaction buffer reduced the activity of the enzyme, whereas L-Gln did not modify its enzymatic activity. This is the first report on the expression and characterization of the L-asparaginase (AnsA) from R. etli. Phylogenetic analysis of asparaginases reveals an increasing group of known sequences of the Rhizobialtype asparaginase II family.  相似文献   

8.
A directed evolution protocol was developed for glucose oxidase (GOx) from Aspergillus niger that mimics applications conditions and employs a well-known mediator, oxidized ferrocenemethanol, in a medium throughput screen (96-well plate format). Upon reduction, oxidized ferrocenemethanol shows a color change from blue to pale yellow that can be recorded at 625 nm. Under optimized screening conditions, a CV of less than 20% was achieved in 96-well microtiter plates. For validating the screening system, two mutant libraries of GOx were generated by standard error-prone PCR conditions (0.04 mM MnCl(2)) and Saccharomyces cerevisiae was employed as host for secreted GOx expression. Two screening of approximately 2000 GOx mutants yielded a double mutant (T30S I94V) with improved pH and thermal resistance. Thermal resistance at a residual activity of 50% was increased from 58 degrees C (wild type, WT) to 62 degrees C (T30S I94V) and pH stability was improved at basic pH (pH 8-11). K(m) for glucose remained nearly unchanged (20.8 mM WT; 21.3 mM T30S I94V) and k(cat) increased (69.5/s WT; 137.7/s T30S I94V).  相似文献   

9.
To elucidate the interaction between substrate inhibition and substrate transglycosylation of retaining glycoside hydrolases (GHs), a steady-state kinetic study was performed for the GH family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium, using laminarioligosaccharides as substrates. When laminaribiose was incubated with the enzyme, a transglycosylation product was detected by thin-layer chromatography. The product was purified by size-exclusion chromatography, and was identified as a 6-O-glucosyl-laminaribiose (beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-D-Glc) by 1H NMR spectroscopy and electrospray ionization mass spectrometry analysis. In steady-state kinetic studies, an apparent decrease of laminaribiose hydrolysis was observed at high concentrations of the substrate, and the plots of glucose production versus substrate concentration were thus fitted to a modified Michaelis-Menten equation including hydrolytic and transglycosylation parameters (K(m), K(m2), k(cat), k(cat2)). The rate of 6-O-glucosyl-laminaribiose production estimated by high-performance anion-exchange chromatography coincided with the theoretical rate calculated using these parameters, clearly indicating that substrate inhibition of this enzyme is fully explained by substrate transglycosylation. Moreover, when K(m), k(cat), and affinity for glucosyl-enzyme intermediates (K(m2)) were estimated for laminarioligosaccharides (DP=3-5), the K(m) value of laminaribiose was approximately 5-9 times higher than those of the other oligosaccharides (DP=3-5), whereas the K(m2) values were independent of the DP of the substrates. The kinetics of transglycosylation by the enzyme could be well interpreted in terms of the subsite affinities estimated from the hydrolytic parameters (K(m) and k(cat)), and a possible mechanism of transglycosylation is proposed.  相似文献   

10.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

11.
12.
Pyridoxal 5'-phosphate-dependent cystalysin from Treponema denticola catalyzes the beta-displacement of the beta-substituent from both L-aspartate and L-cysteine sulfinic acid. The steady-state kinetic parameters for beta-desulfination of L-cysteine sulfinic acid, k(cat) and K(m), are 89+/-7 s(-1) and 49+/-9 mM, respectively, whereas those for beta-decarboxylation of L-aspartate are 0.8+/-0.1 s(-1) and 280+/-70 mM. Moreover, cystalysin in the pyridoxamine 5'-phosphate form has also been found to catalyze beta-decarboxylation of oxalacetate as shown by consumption of oxalacetate and a concomitant production of pyruvate. The k(cat) and K(m) of this reaction are 0.15+/-0.01 s(-1) and 13+/-2 mM, respectively. Possible mechanistic and physiological implications are discussed.  相似文献   

13.
14.
The kinetic parameters of several substrates of penicillin acylase from Streptomyces lavendulae have been determined. The enzyme hydrolyses phenoxymethyl penicillin (penicillin V) and other penicillins with aliphatic acyl-chains such as penicillin F, dihydroF, and K. The best substrate was penicillin K (octanoyl penicillin) with a k(cat)/K(m) of 165.3 mM(-1) s(-1). The enzyme hydrolyses also chromogenic substrates as NIPOAB (2-nitro-5-phenoxyacetamido benzoic acid), NIHAB (2-nitro-5-hexanoylamido benzoic acid) or NIOAB (2-nitro-5-octanoylamido benzoic acid), however failed to hydrolyse phenylacetil penicillin (penicillin G) or NIPAB (2-nitro-5-phenylacetamido benzoic acid) and penicillins with polar substituents in the acyl moiety. These results suggest that the structure of the acyl moiety of the substrate is more determinant than the amino moiety for enzyme specificity. The enzyme was inhibited by several organic acids and the extent of inhibition changed with the hydrophobicity of the acid. The best inhibitor was octanoic acid with a K(i) of 0.8 mM. All the results, taking together, point to an active site highly hydrophobic for this penicillin acylase from Streptomyces lavendulae.  相似文献   

15.
The filamentous fungus Penicillium funiculosum produces a mixture of modular and non-modular xylanases belonging to different glycoside hydrolase (GH) families. In the present study, we heterologously expressed the cDNA encoding GH11 xylanase B (XYNB) and studied the enzymatic properties of the recombinant enzyme. Expression in Escherichia coli led to the partial purification of a glutathione fusion protein from the soluble fraction whereas the recombinant protein produced in Pichia pastoris was successfully purified using a one-step chromatography. Despite O-glycosylation heterogeneity, the purified enzyme efficiently degraded low viscosity xylan [K(m)=40+/-3 g l(-1), V(max)=16.1+/-0.8 micromol xylose min(-1) and k(cat)=5405+/-150 s(-1) at pH 4.2 and 45 degrees C] and medium viscosity xylan [K(m)=34.5+/-3.2 g l(-1), V(max)=14.9+/-1.0 micromol xylose min(-1)k(cat)=4966+/-333 s(-1) at pH 4.2 and 45 degrees C]. XYNB was further tested for its ability to interact with wheat xylanase inhibitors. The xylanase activity of XYNB produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 89.7+/-8.5 and 2.9+/-0.3 nM, respectively, whereas no inhibition was detected with TAXI-II. Physical interaction of both TAXI-I and XIP-I with XYNB was observed using titration curves across a pH range 3-9.  相似文献   

16.
The hydrolysis of N-acetyl-L-methionine, N-acetylglycine, N-acetyl-L-phenylalanine, and N-acetyl-L-alanine at 298.35K by porcine kidney acylase I (EC 3.5.1.14) was monitored by the heat released upon mixing of the substrate and enzyme in a differential stopped flow microcalorimeter. Values for the Michaelis constant (K(m)) and the catalytic constant (k(cat)) were determined from the progress of the reaction curve employing the integrated form of the Michaelis-Menten equation for each reaction mixture. When neglecting acetate product inhibition of the acylase, values for k(cat) were up to a factor of 2.3 larger than those values determined from reciprocal initial velocity-initial substrate concentration plots for at least four different reaction mixtures. In addition, values for K(m) were observed to increase linearly with an increase in the initial substrate concentration. When an acetate product inhibition constant of 600+/-31M(-1), determined by isothermal titration calorimetry, was used in the progress curve analysis, values for K(m) and k(cat) were in closer agreement with their values determined from the reciprocal initial velocity versus initial substrate concentration plots. The reaction enthalpies, Delta(r)H(cal), which were determined from the integrated heat pulse per amount of substrate in the reaction mixture, ranged from -4.69+/-0.09kJmol(-1) for N-acetyl-L-phenylalanine to -1.87+/-0.23kJmol(-1) for N-acetyl-L-methionine.  相似文献   

17.
Using oligonucleotide primers designed to the known gene sequence of an (E)-beta-farnesene (EbetaF) synthase, two cDNA sequences (MxpSS1 and MxpSS2) were cloned from a black peppermint (Menthaxpiperita) plant. MxpSS1 encoded a protein with 96% overall amino acid sequence identity with the EbetaF synthase. Recombinant MxpSS1 produced in Escherichia coli, after removal of an N-terminal thioredoxin fusion, had a K(m) for FPP of 1.91+/-0.1 microM and k(cat) of 0.18 s(-1), and converted farnesyl diphosphate (FPP) into four products, the major two being cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%). This is the first cis-muuroladiene synthase, to be characterised. MxpSS2 encoded a protein with only two amino acids differing from EbetaF synthase. Recombinant MxpSS2 protein showed no activity towards FPP. One of the two mutations, at position 531 (leucine in MxpSS2 and serine in EbetaF synthase) was shown, by structural modelling to occur in the J-K loop, an element of the structure of sesquiterpene synthases known to be important in the reaction mechanism. Reintroduction of the serine at position 531 into MxpSS2 by site-directed mutagenesis restored EbetaF synthase activity (K(m) for FPP 0.98+/-0.12 microM, k(cat) 0.1 s(-1)), demonstrating the crucial role of this residue in the enzyme activity. Analysis, by GC-MS, of the sesquiterpene profile of the plant used for the cloning, revealed that EbetaF was not present, confirming that this particular mint chemotype had lost EbetaF synthase activity due to the observed mutations.  相似文献   

18.
The phosphoglucomutase gene from a wild type Fusarium oxysporum strain (F3), was homologously expressed, under the control of the constitutive promoter of gpdA of Aspergillus nidulans. The transformant produced elevated levels of phosphoglucomutase activity compared to the wild type, a fact that facilitated the subsequent purification procedure. The enzyme (FoPGM) was purified to homogeneity applying three anion exchange and one gel filtration chromatography steps. The native enzyme revealed a monomeric structure with a molecular mass of 60 kDa, while the isoelectric point was 3.5. FoPGM was active in pH ranged from 6.0 to 8.0, with an optimum using 3-(N-morpholino)propanesulfonic acid buffer at 7.0, while loss of activity was observed when phosphate buffer was used in the above mentioned pH range. The optimal temperature for activity was 45°C but the enzyme became unstable at temperatures above 40°C. FoPGM requires the presence of a divalent cation for its function with maximum activity being obtained with Co(2+). The apparent K(m) for Co(2+) was found to be 10 μM. The enzyme was also active with other divalent metal ions such as Mn(2+), Mg(2+), Ni(2+) and Ca(2+) but to a lesser extent. The following kinetic constants were determined: v(max), 0.74 μmol mg(protein)(-1)min(-1); k(cat), 44.2 min(-1); K(m)(G1P), 0.10mM; K(m)(G1,6 diP), 1.03 μM; k(cat)/K(m)(G1P), 443 mM(-1)min(-1) and k(cat)/K(m)(G1,6 diP), 42,860 mM(-1)min(-1). The enzyme was considered to follow a Ping Pong substituted enzyme or enzyme isomerization mechanism.  相似文献   

19.
The (1→4)-β-d-glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β-d-glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 mm, respectively. d-Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β-d-glucopyranoside (Ki 2.1 μm), cellobiose (Ki 1.95 μm), and cellotriose (Ki 7.9 μm) [cf.d-glucose (Ki 1756 μm)]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β-d-glucopyranoside appeared to be competitively inhibited by d-glucono-1,5-lactone. However, inhibition of hydrolysis by d-glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β-d-glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β-d-glucanase found in the same cellulase, namely, the (1→4)-β-d-glucan cellobiohydrolase.  相似文献   

20.
The Ala103 to Gly mutation, introduced within the glucose isomerase from Streptomyces sp. SK (SKGI) decreased its catalytic efficiency (k(cat)/K(m)) toward D-glucose from 7.1 to 3 mM(-1) min(-1). The reverse counterpart replacement Gly103Ala introduced into the glucose isomerase of Streptomyces olivochromogenes (SOGI) considerably improved its catalytic efficiency to be 6.7 instead of 3.2 mM(-1) min(-1). This later mutation also increased the half-life time of the enzyme from 70 to 95 min at 80 degrees C and mainly modified its pH profile. These results provide evidence that the residue Ala103 plays an essential role in the kinetic and physicochemical properties of glucose isomerases from Streptomyces species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号