首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
3.
4.
5.
6.
7.
The cold shock response in both Escherichia coli and Bacillus subtilis is induced by an abrupt downshift in growth temperature and leads to a dramatic increase in the production of a homologous class of small, often highly acidic cold shock proteins. This protein family is the prototype of the cold shock domain (CSD) that is conserved from bacteria to humans. For B. subtilis it has been shown that at least one of the three resident cold shock proteins (CspB to D) is essential under optimal growth conditions as well as during cold shock. Analysis of the B. subtilis cspB cspC double deletion mutant revealed that removal of these csp genes results in pleiotropic alteration of protein synthesis, cell lysis during the entry of stationary growth phase, and the inability to differentiate into endospores. We show here that heterologous expression of the translation initiation factor IF1 from E. coli in a B. subtilis cspB cspC double deletion strain is able to cure both the growth and the sporulation defects observed for this mutant, suggesting that IF1 and cold shock proteins have at least in part overlapping cellular function(s). Two of the possible explanation models are discussed.  相似文献   

8.
9.
[目的]微生物在适应外界环境急剧降温的条件下都会发生应激反应,产生一系列蛋白质被称为冷休克蛋白.冷休克蛋白对乳酸菌适应低温环境和增强抗冻能力方面发挥着重要作用.本文目的是为了研究乳酸乳球菌中冷休克蛋白CspC、CspD的作用.[方法]将冷休克蛋白CspC、CspD基因分别重组到质粒pNZ8148,转化乳酸乳球菌NZ9000后,加入Nisin诱导,对表达产物进行SDS-PAGE电泳分析,比较重组菌与空白菌在30℃条件下菌体生长差异及反复冻融活菌数的差异.[结果]得出CspC、CspD的相对分子量分别为7.0、6.2 kDa.[结论]CspC使菌体更加迅速的恢复了生长;冷休克蛋白CspD增强了菌体的抗冻存活率(增加了30~40倍).  相似文献   

10.
Thermoregulation of virulence genes in bacterial pathogens is essential for environment-to-host transition. However, the mechanisms governing cold adaptation when outside the host remain poorly understood. Here, we found that the production of cold shock proteins CspB and CspC from Staphylococcus aureus is controlled by two paralogous RNA thermoswitches. Through in silico prediction, enzymatic probing and site-directed mutagenesis, we demonstrated that cspB and cspC 5′UTRs adopt alternative RNA structures that shift from one another upon temperature shifts. The open (O) conformation that facilitates mRNA translation is favoured at ambient temperatures (22°C). Conversely, the alternative locked (L) conformation, where the ribosome binding site (RBS) is sequestered in a double-stranded RNA structure, is folded at host-related temperatures (37°C). These structural rearrangements depend on a long RNA hairpin found in the O conformation that sequesters the anti-RBS sequence. Notably, the remaining S. aureus CSP, CspA, may interact with a UUUGUUU motif located in the loop of this long hairpin and favour the folding of the L conformation. This folding represses CspB and CspC production at 37°C. Simultaneous deletion of the cspB/cspC genes or their RNA thermoswitches significantly decreases S. aureus growth rate at ambient temperatures, highlighting the importance of CspB/CspC thermoregulation when S. aureus transitions from the host to the environment.  相似文献   

11.
CspA, CspB, and CspG, the major cold shock proteins of Escherichia coli, are dramatically induced upon temperature downshift. In this report, we examined the effects of kanamycin and chloramphenicol, inhibitors of protein synthesis, on cold shock inducibility of these proteins. Cell growth was completely blocked at 37 degrees C in the presence of kanamycin (100 microgram/ml) or chloramphenicol (200 microgram/ml). After 10 min of incubation with the antibiotics at 37 degrees C, cells were cold shocked at 15 degrees C and labeled with [35S]methionine at 30 min after the cold shock. Surprisingly, the synthesis of all these cold shock proteins was induced at a significantly high level virtually in the absence of synthesis of any other protein, indicating that the cold shock proteins are able to bypass the inhibitory effect of the antibiotics. Possible bypass mechanisms are discussed. The levels of cspA and cspB mRNAs for the first hour at 15 degrees C were hardly affected in the absence of new protein synthesis caused either by antibiotics or by amino acid starvation.  相似文献   

12.
13.
When carrying out a proteome analysis with a ptsH3 mutant of Lactobacillus casei, we found that the cold shock protein CspA was significantly overproduced compared to the wild-type strain. We also noticed that CspA and CspB of L. casei and CSPs from other organisms exhibit significant sequence similarity to the C-terminal part of EIIA(Glc), a glucose-specific component of the phosphoenolpyruvate:sugar phosphotransferase system. This similarity suggested a direct interaction of HPr with CSPs, as histidyl-phosphorylated HPr has been shown to phosphorylate EIIA(Glc) in its C-terminal part. We therefore compared the cold shock response of several carbon catabolite repression mutants to that of the wild-type strain. Following a shift from 37 degrees C to lower temperatures (20, 15 or 10 degrees C), all mutants showed significantly reduced growth rates. Moreover, glucose-grown mutants unable to form P-Ser-HPr (ptsH1, hprK) exhibited drastically increased sensitivity to freeze/thaw cycles. However, when the same mutants were grown on ribose or maltose, they were similarly resistant to freezing and thawing as the wild-type strain. Although subsequent biochemical and genetic studies did not allow to identify the form of HPr implicated in the resistance to cold and freezing conditions, they strongly suggested a direct interaction of HPr or one of its phospho-derivatives with CspA and/or another, hitherto undetected cold shock protein in L. casei.  相似文献   

14.
15.
16.
Thermotoga maritima (Tm) expresses a 7 kDa monomeric protein whose 18 N-terminal amino acids show 81% identity to N-terminal sequences of cold shock proteins (Csps) from Bacillus caldolyticus and Bacillus stearothermophilus. There were only trace amounts of the protein in Thermotoga cells grown at 80 degrees C. Therefore, to perform physicochemical experiments, the gene was cloned in Escherichia coli. A DNA probe was produced by PCR from genomic Tm DNA with degenerated primers developed from the known N-terminus of TmCsp and the known C-terminus of CspB from Bacillus subtilis. Southern blot analysis of genomic Tm DNA allowed to produce a partial gene library, which was used as a template for PCRs with gene- and vector-specific primers to identify the complete DNA sequence. As reported for other csp genes, the 5' untranslated region of the mRNA was anomalously long; it contained the putative Shine-Dalgarno sequence. The coding part of the gene contained 198 bp, i.e., 66 amino acids. The sequence showed 61% identity to CspB from B. caldolyticus and high similarity to all other known Csps. Computer-based homology modeling allowed the conclusion that TmCsp represents a beta-barrel similar to CspB from B. subtilis and CspA from E. coli. As indicated by spectroscopic analysis, analytical gel permeation chromatography, and mass spectrometry, overexpression of the recombinant protein yielded authentic TmCsp with a molecular weight of 7,474 Da. This was in agreement with the results of analytical ultracentrifugation confirming the monomeric state of the protein. The temperature-induced equilibrium transition at 87 degrees C exceeds the maximum growth temperature of Tm and represents the maximal Tm-value reported for Csps so far.  相似文献   

17.
Escherichia coli contains the CspA family, consisting of nine proteins (CspA to CspI), in which CspA, CspB, and CspG have been shown to be cold shock inducible and CspD has been shown to be stationary-phase inducible. The cspI gene is located at 35.2 min on the E. coli chromosome map, and CspI shows 70, 70, and 79% identity to CspA, CspB, and CspG, respectively. Analyses of cspI-lacZ fusion constructs and the cspI mRNA revealed that cspI is cold shock inducible. The 5'-untranslated region of the cspI mRNA consists of 145 bases and causes a negative effect on cspI expression at 37 degrees C. The cspI mRNA was very unstable at 37 degrees C but was stabilized upon cold shock. Analyses of the CspI protein on two-dimensional gel electrophoresis revealed that CspI production is maximal at or below 15 degrees C. Taking these results together, E. coli possesses a total of four cold shock-inducible proteins in the CspA family. Interestingly, the optimal temperature ranges for their induction are different: CspA induction occurs over the broadest temperature range (30 to 10 degrees C), CspI induction occurs over the narrowest and lowest temperature range (15 to 10 degrees C), and CspB and CspG occurs at temperatures between the above extremes (20 to 10 degrees C).  相似文献   

18.
Escherichia coli contains a large CspA family, CspA to CspI. Here, we demonstrate that E. coli is highly protected against cold-shock stress, as these CspA homologues existed at approximately a total of two million molecules per cell at low temperature and growth defect was not observed until four csp genes (cspA, cspB, cspE and cspG) were deleted. The quadruple-deletion strain acquired cold sensitivity and formed filamentous cells at 15 degrees C although chromosomes were normally segregated. The cold-sensitivity and filamentation phenotypes were suppressed by all members of the CspA family except for CspD, which causes lethality upon overexpression. Interestingly, the cold sensitivity of the mutant was also suppressed by the S1 domain of polynucleotide phosphorylase (PNPase), which also folds into a beta-barrel structure similar to that of CspA. The present results show that cold-shock proteins and S1 domains share not only the tertiary structural similarity but also common functional properties, suggesting that these seemingly distinct protein categories may have evolved from a common primordial RNA-binding protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号