首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a PCR-based assay to quantify trichothecene-producing Fusarium based on primers derived from the trichodiene synthase gene (Tri5). The primers were tested against a range of fusarium head blight (FHB) (also known as scab) pathogens and found to amplify specifically a 260-bp product from 25 isolates belonging to six trichothecene-producing Fusarium species. Amounts of the trichothecene-producing Fusarium and the trichothecene mycotoxin deoxynivalenol (DON) in harvested grain from a field trial designed to test the efficacies of the fungicides metconazole, azoxystrobin, and tebuconazole to control FHB were quantified. No correlation was found between FHB severity and DON in harvested grain, but a good correlation existed between the amount of trichothecene-producing Fusarium and DON present within grain. Azoxystrobin did not affect levels of trichothecene-producing Fusarium compared with those of untreated controls. Metconazole and tebuconazole significantly reduced the amount of trichothecene-producing Fusarium in harvested grain. We hypothesize that the fungicides affected the relationship between FHB severity and the amount of DON in harvested grain by altering the proportion of trichothecene-producing Fusarium within the FHB disease complex and not by altering the rate of DON production. The Tri5 quantitative PCR assay will aid research directed towards reducing amounts of trichothecene mycotoxins in food and animal feed.  相似文献   

2.
3.
Fusarium head blight (FHB) is a devastating disease of small grain cereal crops caused by the necrotrophic pathogen Fusarium graminearum and Fusarium culmorum. These fungi produce the trichothecene mycotoxin deoxynivalenol (DON) and its derivatives, which enhance the disease development during their interactions with host plants. For the self-protection, the trichothecene producer Fusarium species have Tri101 encoding trichothecene 3-O-acetyltransferase. Although transgenic expression of Tri101 significantly reduced inhibitory action of DON on tobacco plants, there are several conflicting observations regarding the phytotoxicity of 3-acetyldeoxynivalenol (3-ADON) to cereal plants; 3-ADON was reported to be highly phytotoxic to wheat at low concentrations. To examine whether cereal plants show sufficient resistance to 3-ADON, we generated transgenic rice plants with stable expression and inheritance of Tri101. While root growth of wild-type rice plants was severely inhibited by DON in the medium, this fungal toxin was not phytotoxic to the transgenic lines that showed trichothecene 3-O-acetylation activity. This is the first report demonstrating the DON acetylase activity and DON-resistant phenotype of cereal plants expressing the fungal gene. S. Ohsato and T. Ochiai-Fukuda should be considered as joint first authors.  相似文献   

4.
Fusarium graminearum trichothecene producing isolates can be broadly divided into two chemotypes based on the production of the 8- ketotrichothecenes deoxynivalenol (DON) and nivalenol (NIV). Functional Tri13 gene required for the production of NIV and 4- acetyl NIV, whereas in the isolates producing DON and its acetylated derivates, this gene is nonfunctional. In this study, a total of 57 isolates from different fields of Mazandaran province, Iran were identified as F. graminearum using classical methods and species specific primers. In order to assess the potential of isolates to produce NIV or DON, we used PCR to determine whether isolates carried a functional or nonfunctional Tri13 gene. Out of the 57 tested F. graminearum isolates with Tri13 PCR assays, 46 yielded an amplicon similar to the size predicted for nivalenol production, while 11 yielded an amplicon similar to the size predicted for deoxynivalenol production. From regions where more than one F. graminearum isolate was obtained, isolates were not exclusively of a single chemotype. It seems that genetic diversity among the isolates has relation with geographical region and wheat cultivar. The assay can provide information about the distribution of Tri13 haplotype that can be used in tracing of trichothecene contaminated samples.  相似文献   

5.
Fusarium head blight caused by Fusarium graminearum is a disease of cereal crops that not only reduces crop yield and quality but also results in contamination with trichothecenes such as nivalenol and deoxynivalenol (DON). To analyze the trichothecene induction mechanism, effects of 12 carbon sources on the production of DON and 3-acetyldexynivalenol (3ADON) were examined in liquid cultures incubated with nine strains of 3ADON-producing F. graminearum. Significantly high levels of trichothecene (DON and 3ADON) production by sucrose, 1-kestose and nystose were commonly observed among all of the strains tested. On the other hand, the levels of trichothecene biosynthesis induced by the other carbon sources were strain-specific. Tri4 and Tri5 expressions were up-regulated in the sucrose-containing medium but not in glucose. Trichothecene accumulation in the sucrose-containing medium was not repressed by the addition of glucose, indicating that trichothecene production was not regulated by carbon catabolite repression. These findings suggest that F. graminearum recognizes sucrose molecules, activates Tri gene expression and induces trichothecene biosynthesis.  相似文献   

6.
禾谷镰刀菌Tri101基因编码的单端孢酶烯3-O-乙酰转移酶可通过加乙酰基的形式使禾谷镰刀菌产生的单族毒素(如DON)转变为较低的毒性。本研究利用RT-PCR技术从禾谷镰刀菌0623中扩增并克隆了Tri101基因的cDNA片段,测序结果表明,Tri101基因核苷酸序列阅读框架全长1356bp(GenBank序列号:GQ907236),编码451个氨基酸的多肽,推测分子量为49.45kD,等电点为5.14。氨基酸序列同源性比对结果表明,它与Kimura报道的禾谷镰刀菌Tri101氨基酸序列同源性最高,为99.56%,与其它13种镰刀菌的Tri101氨基酸序列的同源性分别为97.91%-75.68%。系统进化树分析结果表明,Fusarium graminearium0623与Fusarium sporotrichioides属于同一进化枝且与Fusarium asiaticum有较近的亲缘关系,而与F.oxysporum、F.moniliforme、F.nygamai、F.nisikadoi和F.decemcellulare的亲缘关系较远。  相似文献   

7.
Hongxiang  Ma  Hejing  Ge  Xu  Zhang  Weizhong  Lu  Dazhao  Yu  He  Chen  Jianming  Chen 《Journal of Phytopathology》2009,157(3):166-171
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe is a devastating barley disease world-wide, causing significant yield losses and contaminating cereal products with mycotoxins. Barley grain contaminated with deoxynivalenol (DON) is associated with gushing and may be rejected by the malting and brewing industry. Genetically inherited resistance is the most effective option for the control of the disease. A total of 266 barley cultivars and breeding lines originating from China were evaluated for FHB resistance and concentration of DON in grain. Plants were inoculated with isolates of F. graminearum under field conditions by injecting conidia into a single spikelet of each spike. FHB symptoms were evaluated by visual inspection, and DON content was analysed by HPLC. Significant differences in FHB ratings and DON levels were observed among cultivars. Visual symptoms of FHB varied from 4.88 to 71.75% of infected spikelets 21 days after inoculation and from 7.86 to 113.33 area under the disease progress curve units (AUDPC). Twenty-seven lines were more resistant to FHB than the control resistant cultivar Zhedar 2 and with fewer than 12% infected spikelets. Twenty-one of the above lines originated from the area in the mid to low valley of Yangtze River, where FHB epidemics are frequent. DON levels ranged from 0.05 to 24.39 mg/kg among the tested barley lines. Correlation coefficients were significant between FHB symptom ratings and DON levels. However, there was no significant correlation between symptom rating and plant height and no significant correlation between symptom rating and heading date.  相似文献   

8.
Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.  相似文献   

9.
AIMS: Correlations between DNA content of trichothecene-producing Fusarium spp. and concentration of the key mycotoxin deoxynivalenol (DON) in cereal samples. METHODS AND RESULTS: A LightCycler PCR-based assay was used to quantify the DNA from trichothecene-producing Fusarium spp. in 300 wheat samples. DNA concentrations ranged from not detectable to 16.3 mg kg-1 whereas DON concentrations (GC/MS data) varied from not detectable to 34.3 mg kg-1. Data analysis revealed a coefficient of correlation r=0.9557 between DON concentrations and DNA-amounts over all samples. An interval of confidence for P=95% was calculated based on samples with DON concentrations < or = 1.5 mg kg-1 (n=234). CONCLUSIONS: Quantification of 32 samples of Fusarium-contaminated wheat was performed within 45 min. Data analysis allowed estimation of DON contamination from quantitative PCR data in the wheat samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The method described is useful for the screening of cereals in industrial quality control.  相似文献   

10.
The ability to rapidly distinguish trichothecene chemotypes in a given species/population of the genus Fusarium is important due to significant differences in the toxicity of these secondary metabolites. A multiplex PCR assay, based on primer pairs derived from the Tri3, Tri5 and Tri7 genes of the trichothecene gene cluster was established for the identification of the different chemotypes among Fusarium graminearum, F. culmorum and F. cerealis. Using the selected primers, specific amplification products of 625, 354 and 708 bp were obtained from Fusarium isolates producing nivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol, respectively. Moreover, the multiplex PCR was successfully used to identify the chemotype of the Fusarium species contaminating wheat kernels. Four picograms of fungal DNA were found to be necessary to obtain a visible amplification product.  相似文献   

11.
Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = −0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.  相似文献   

12.

Background  

The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.  相似文献   

13.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

14.
The impact of moisture on the development of Fusarium head blight (FHB) and accumulation of deoxynivalenol (DON) in Fusarium-infected wheat was examined. The field experiments were designed as split-split-plot with five replicates. Main plots were durations of mist-irrigation [14, 21, 28 and 35 days after inoculation (DAI)]; sub-plots were wheat cultivar; and sub-sub-plots were F. graminearum isolates differing in aggressiveness and DON production capacity. The wheat cultivars ‘Alsen’ (moderately resistant), ‘2375’ (moderately susceptible) and ‘Wheaton’ (susceptible) were inoculated at anthesis. Severity of FHB was assessed 21 days after inoculation. Visually scabby kernels (VSK) and mycotxin content (DON, 15-AcDON, 3-AcDON and nivalenol) were determined on harvested grain. The damage to grain, as measured by VSK, was significantly lower in the treatments receiving the least amount of mist-irrigation (14 DAI) suggesting that extended moisture promotes disease development. DON was, however, significantly lower in the 35-DAI misting treatment than in treatments receiving less post-inoculation moisture. The reduction of DON observed in treatments receiving extended mist-irrigation was greatest in ‘Wheaton’ which recorded the highest FHB severity, VSK and DON of the cultivars examined. Our results suggest that DON and other trichothecenes may be reduced by late-season moisture despite increased grain colonization. We suggest that leaching may explain much of the reduction of mycotoxins, and that differences in tissue morphology and metabolism may determine the rate of leaching from specific tissues.  相似文献   

15.
16.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of small grain cereal crops. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON). DON inhibits protein synthesis in eukaryotic cells and acts as a virulence factor during fungal pathogenesis, therefore resistance to DON is considered an important component of resistance against FHB. One mechanism of resistance to DON is conversion of DON to DON-3-O-glucoside (D3G). Previous studies showed that expression of the UDP-glucosyltransferase genes HvUGT13248 from barley and AtUGt73C5 (DOGT1) from Arabidopsis thaliana conferred DON resistance to yeast. Over-expression of AtUGt73C5 in Arabidopsis led to increased DON resistance of seedlings but also to dwarfing of transgenic plants due to the formation of brassinosteroid-glucosides. The objectives of this study were to develop transgenic Arabidopsis expressing HvUGT13248, to test for phenotypic changes in growth habit, and the response to DON. Transgenic lines that constitutively expressed the epitope-tagged HvUGT13248 protein exhibited increased resistance to DON in a seed germination assay and converted DON to D3G to a higher extent than the untransformed wild-type. By contrast to the over-expression of DOGT1 in Arabidopsis, which conjugated the brassinosteriod castasterone with a glucoside group resulting in a dwarf phenotype, expression of the barley HvUGT13248 gene did not lead to drastic morphological changes. Consistent with this observation, no castasterone-glucoside formation was detectable in yeast expressing the barley HvUGT13248 gene. This barley UGT is therefore a promising candidate for transgenic approaches aiming to increase DON and Fusarium resistance of crop plants without undesired collateral effects.  相似文献   

17.
Fusarium graminearum is the primary cause of Fusarium head blight (FHB), one of the most economically important diseases of wheat worldwide. FHB reduces yield and contaminates grain with the trichothecene mycotoxin deoxynivalenol (DON), which poses a risk to plant, human and animal health. The first committed step in trichothecene biosynthesis is formation of trichodiene (TD). The volatile nature of TD suggests that it could be a useful intra or interspecies signalling molecule, but little is known about the potential signalling role of TD during F. graminearum-wheat interactions. Previous work using a transgenic Trichoderma harzianum strain engineered to emit TD (Th + TRI5) indicated that TD can function as a signal that can modulate pathogen virulence and host plant resistance. Herein, we demonstrate that Th + TRI5 has enhanced biocontrol activity against F. graminearum and reduced DON contamination by 66% and 70% in a moderately resistant and a susceptible cultivar, respectively. While Th + TRI5 volatiles significantly influenced the expression of the pathogenesis-related 1 (PR1) gene, the effect was dependent on cultivar. Th + TRI5 volatiles strongly reduced DON production in F. graminearum plate cultures and downregulated the expression of TRI genes. Finally, we confirm that TD fumigation reduced DON accumulation in a detached wheat head assay.  相似文献   

18.
An outbreak of Fusarium Head Blight of durum wheat occurred in 2004 being localized in sub-humid and higher semi-arid region of Northern Tunisia. A mycological survey carried out throughout these regions, revealed that 78% of the prospected fields were infested. Results of the morphological and molecular identification, showed that the most common species isolated from diseased wheat spikes was Microdochium nivale var. nivale (63.5%), followed by Fusarium culmorum (26%), F. pseudograminearum (9%) and F. avenaceum (1.5%). To evaluate mycotoxin content of naturally infected grain, the amounts of trichothecene mycotoxin deoxynivalenol (DON) in harvested grain from 45 fields were quantified by RIDASCREEN DON Enzyme Immunoassay Kit (ELISA) . This study showed that the infection levels in freshly harvested grain were very low and the maximum deoxynivalenol (DON) level of the positive samples was 53 ppb. This is the first report on the natural occurrence of DON in naturally infected wheat grain sampled from Northern Tunisia.  相似文献   

19.
20.
Phytopathogenic fungi such as Fusarium spp. synthesize trichothecene family phytotoxins. Although the type B trichothecene, deoxynivalenol (DON), is thought to be a virulence factor allowing infection of plants by their trichothecene-producing Fusarium spp., little is known about effects of trichothecenes on the defense response in host plants. Therefore, in this article, we investigated these effects of various trichothecenes in Fusarium-susceptible Arabidopsis thaliana. Necrotic lesions were observed in Arabidopsis leaves infiltrated by 1 microM type A trichothecenes such as T-2 toxin. Trichothecene-induced lesions exhibited dead cells, callose deposition, generation of hydrogen peroxide, and accumulation of salicylic acids. Moreover, infiltration by trichothecenes caused rapid and prolonged activation of two mitogen-activated protein kinases and induced expression of both PR-1 and PDF1.2 genes. Thus, type A trichothecenes trigger the cell death by activation of an elicitor-like signaling pathway in Arabidopsis. Although DON did not have such an activity even at 10 microM, translational inhibition by DON was observed at concentrations above 5 microM. These results suggested that DON is capable of inhibiting translation in Arabidopsis cells without induction of the elicitor-like signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号