首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Six bacteriophages with an elongated head and a short, noncontractile tail were compared by DNA-DNA hybridization, seroneutralization kinetics, mol% G+C and molecular weight of DNA, and host range. Three phage species could be identified. Phage species 1 containedEnterobacter sakazakii phage C2,Erwinia herbicola phages E3 and E16P, andSalmonella newport phage 7–11. These phages had a rather wide host range (4 to 13 bacterial species). DNA relatedness among species 1 phages was above 75% relative binding ratio (S1 nuclease method, 60°C) when labeled DNA from phage C2 was used, and above 41% when labeled DNA from phage E3 was used. Molecular weight of DNA was about 58×106 (C2) to 67 ×106 (E3). The mol% G+C of DNA was 43–45. Anti-C2 serum that neutralizes all phages of species 1 does not neutralize phages of the other two species. Species 2 contains only coliphage Esc-7-11, whose host range was only oneEscherichia coli strain out of 188 strains of Enterobacteriaceae studied; it was unrelated to the other two species by seroneutralization and DNA hybridization. DNA from phage Esc-7-11 had a base composition of 43 mol% G+C and a molecular weight of about 45×106. Species 3 contains onlyProteus mirabilis phage 13/3a. Its host range was limited to swarmingProteus species. Species 3 was unrelated to the other two species by seroneutralization and DNA hybridization. DNA from phage 13/3a had a base composition of 35 mol% G+C and molecular weight of about 53×106. It is proposed that phage species be defined as phage nucleic acid hybridization groups.  相似文献   

2.
Summary Genetic recombination induced by structural damage in DNA molecules was investigated in E. coli K12 () lysogens infected with genetically marked phage . Photoproducts were induced in the phage DNA before infection by exposing them either to 313 nm light in the presence of acetophenone or to 254 nm light. To test the role of the replication of the damaged phage DNA on the frequency of the induced recombination, both heteroimmune and homoimmune crosses were performed.First, samples of a heteroimmune phage imm434 P80 exposed to these treatments were allowed to infect cells lysogenic for prophage cI857 P3. Phage DNA replication and maturation took place, and the resulting progeny phages were assayed for the frequency of P + recombinants. Recombination was less frequent in infected cells exposed to visible light and in wild type cells able to perform excision repair than in excision-defective lysogens. Therefore, much of the induced recombination can be atributed to the pyrimidine dimers in the phage DNA, the only photoproducts known to be dissociated by photoreactivating enzyme.Second, in homoimmune crosses, samples of similarly treated homoimmune P3 phages were allowed to infect lysogens carrying cI857 P80. Replication of the phage DNA containing ultraviolet photoproducts was repressed by immunity, and was futher blocked by the lack of the P gene product needed for replication. The lysogens were purified and scored for both colony forming ability and for P + recombinant prophages. The 254 nm photoproducts increased the frequency of recombination in these homimmune crosses, even though phage DNA replication was blocked. Irradiation with 313 nm light and acetophenone M, which produces dimers and unknown photoproducts, was not as effective per dimer as the 254 nm light.It is concluded from these results that certain unidentified 254 nm photoproducts can cause recombination even in the absence of DNA replication. They are not pyrimidine dimers, as they are not susceptible to excision repair or photoreactivation. In contrast, pyrimidine dimers appear to cause recombination only when the DNA containing them undergoes replication.  相似文献   

3.
Summary When UV-irradiated X174 was grown in pre-irradiated host cells of various strains, ultraviolet reactivation (UVR) was observed only in recombination proficient strains such as E. coli C (uvrA + recA +) and HF4704 (uvrA - recA +), but not in the recombination deficient strain HF4712 (uvrA + recA -). By increasing the multiplicity of infection, no rise in the amount of such reactivation was observed. From the study of the neutral and alkaline sucrose gradient sedimentation patterns of DNA samples extracted from unirradiated cells infected with unirradiated phage, it appears that after the conversion of the viral single stranded (SS) DNA to the double stranded form (DS), nicks or scissions were produced on it within all three strains, which were ultimately sealed up in the recA + but persisted within the recA - host cells. When UV-irradiated phage infected unirradiated host cells, such nicking of the DS DNA appeared to be much more extensive in uvrA + recA +, but slightly reduced in uvrA + recA - and severely suppressed in uvrA - recA + strains. When the host cells were also UV-irradiated, the conversion of the infecting viral SS DNA to DS DNA as well as its subsequent nicking were reduced in all the three strains to a much greater extent. Although nicking of the DS DNA molecule is an essential step even in the normal intracellular replication of X DNA, the production and the sealing up of such nicks appear not to have any positive correlation with UVR of these phages. A drastic reduction in nicking due te pre-irradiation of the host cells might, however, mean slowing down of the replication of the damaged parental RF molecules which would facilitate their repair perhaps through recombination with the homologous parts of the host genome.  相似文献   

4.
Summary Extracts derived from E. coli cells infected non-permissively with phage T1 amber mutants were used in an in vitro system to investigate the packaging of T1 DNA into phage heads. The standard extract used infections with amber mutants in genes 1 and 2 (g1-g2-) which are defective in T1 DNA synthesis but can synthesis the proteins required for particle morphogenesis. g1-g2- extracts packaged T1+ virion DNA molecules with an efficiency of 3×105 pfu/g DNA. Extracts from cells infected with phage also defective in DNA synthesis but carrying additional mutations in genes 3.5 or 4 which are required for concatemer formation in vivo (g1-g3.5- and g1-g4- extracts) package T1 virion DNA at substantially lower efficiencies.Analysis of the DNA products from these in vitro reaction showed that concatemeric DNA is formed very efficiently by g1-g2- extracts but not by g1-g3.5- or g1-g4- extracts. These results are interpreted as evidence that the T1 in vitro DNA packaging system primarily operates in a similar manner to the in vivo headful mechanism. This is achieved in vitro by the highly efficient conversion of T1 virion DNA into concatemers which are then packaged with a much lower efficiency into heads to form infectious particles. A secondary pathway for packaging T1 DNA into heads and unrelated to the headful mechanism may also exist.  相似文献   

5.
Summary A temperature sensitive mutant of P22 phage (ts X) was isolated and studied.This mutant seems to have a basic regulatory function: it is defective in an early function like the typical DNA- mutant ts 12.1; it is unable to direct the phage DNA synthesis and does not lyse infected or induced cells.Unlike ts 12.1, the mutation ts X seems to involve a gene product necessary for the expression of any vegetative function, since no phage protein synthesis, no alteration of host DNA synthesis, and no cell killing can be observed under non-permissive conditions.The possible functional similarity between the N-cistron of the phage and the present X-cistron in P22 is discussed.  相似文献   

6.
E. coli SK has its own enzyme system providing DNA host specificity which differs from the known types of specificity inE. coli K12 andE. coli B. Modification and restriction are observed when the PBVI or PBV3 phages are transferred fromE. coli SK toE. coli B or K12 (and back).A methylase has been isolated fromE. coli SK cells and partly purified. This methylase catalyzesin vitro transfer of the labelled methyl groups from S-adenosylmethionine (SAM) to DNA of both phage and tissue origin which gives rise to 5-methylcytosine (5MC) and 6-methylaminopurine (6MAP). The methylase preparations isolated from the cells at the stationary growth have proved to be 1.5–1.7 times as active as the enzyme from the cells at the logarithmic growth stage. The extract ofE. coli SK cells infected with the phage SD cannot methylate DNAin vitro. This fact is due tode novo synthesis of the enzyme which disintegrates SAM down to 5-methylthioadenosine (5MTA) and homoserine (HS). This enzyme is not found in the cells infected with the SD phage in the presence of chloroamphenicole. The activity of the enzyme which disintegrates SAM is the highest between the 4th and the 5th minutes of infection. Thus it may be assumed that this enzyme, most probably, is an early virus specific protein and preventsin vivo methylation of the phage DNA.  相似文献   

7.
Summary Survival of HA or MMS-treated T4 and lambda phages was estimated in bacterial cells differing in their ability to repair DNA. It has been found that the mismatch repair system of the bacterial host, which involvesmutSmutRmutLuvrE anddam loci, does not excise, or does so to only a limited extent, the nonpaired bases from DNA of HA or MMS-treated phages. Mutation inpolA, both in the polymerase as well as in the 53 exonuclease activity, have a small effect on survival of HA-treated phages, whereas mutation in the polymerase activity has a pronounced effect on survival of MMS-treated phages. There was a difference in the effect of polA mutations on survival of MMS-treated T4 and lambda phages; the survival of the former was less affected than the latter. Induction of SOS response has no effect on repair of HA and MMS-treated phages. Pretreatment of bacterial host (including theada - mutant) with low doses of alkylating agents increases the survival of MMS (but not HA)-treated phages; pretreatment of bacteria with HA has no effect on survival of HA-treated phages. Three lines of evidence: the different inactivation rates of MMS-treated T4 and lambda phages, variation in the effect ofpolA mutations on survival of T4 and lambda phages, and a different level of adaptive response inada - cells towards of MMS-treated T4 and lambda phages, suggest that the patterns of DNA methylation in T4 and lambda phages are different.  相似文献   

8.
Summary A phage HP1, infecting transformable cells ofHaemophilus influenzae Rd, has been isolated. The general properties of the wild type and of a clear plaquemutantc1 employed for most of the experiments are described. Phage DNA is infective for transformableHaemophilus cells with an efficiency (plaqueforming units of the original phage recovered as DNA-infected cells) of up to 6×10–3. The competence ofHaemophilus cells for infection with phage DNA parallels the competence for transformation with bacterial DNA.Both HP1 and thec1 mutant are able to lysogenize their host, and the lysogenic cells are readily induced by UV. Competent non-lysogenicHaemophilus cells can be infected by DNA of lysogenic cells, thereby giving rise to phage progeny. Thus, the phage genetic material can be introduced into competentHaemophilus cells in three different ways: injection from intact phage, and infection with either phage DNA or with bacterial DNA carrying the prophage.The UV inactivation curves for infectious phage DNA and for complete phages are similar, both indicating the occurrance of host-cell reactivation. Photoreactivationin vitro of infectious phage DNA takes place to about the same high extent as observed with bacterial transforming DNA.The usefulness of this system for investigating bacterial transformation and biological effects ofin vitro treatment of DNA is discussed.with the technical assistance ofSandra J. Antoine With 4 Figures in the TextPreliminary report presented at the 7th Annual Bacterial Transformation Meeting, Aspen, Colorado, June 17–19, 1963.Supported by a travel grant from the Deutsche Forschungsgemeinschaft.Supported by Research Carreer Development Award GM-K3-7500 and Research Grant RH 00221 from the U.S. Public Health Service.  相似文献   

9.
    
Summary The interaction between the dnaB protein of E. coli and the gene P product of bacteriophage was investigated by measuring the cleavage of closed circular phage DNA after infection of two temperature sensitive dnaB mutants, JG28 and To534 groP - B. Cleavage of superhelical DNA from a B mutant phage was observed after infection of either strain whereas superhelical DNA from a wild type phage was only cleaved after infection of JG28. When DNA synthesis in infected cells was blocked by incubation at the nonpermissive temperature, no inhibition of superhelical phage DNA cleavage was observed. It is concluded that in conditions where the dnaB protein has lost the capacity to function in nucleotide polymerization, it is capable of interacting with the replication gene products to introduce a break in the phage DNA.  相似文献   

10.
The Escherichia coli gene pair mazEF is a regulatable chromosomal toxin-antitoxin module: mazF encodes a stable toxin and mazE encodes for a labile antitoxin that overcomes the lethal effect of MazF. Because MazE is labile, inhibition of mazE expression results in cell death. We studied the effect of mazEF on the development of bacteriophage P1 upon thermoinduction of the prophage P1CM c1ts and upon infection with virulent phage particles (P1 vir ). In several E. coli strains, we showed that the mazEF derivative strains produced significantly more phages than did the parent strain. In addition, upon induction of K38(P1CM c1ts), nearly all of the mazEF mutant cells lysed; in contrast, very few of the parental mazEF + K38 cells underwent lysis. However, most of these cells did not remain viable. Thus, while the mazEF cells die as a result of the lytic action of the phage, most of the mazEF + cells are killed by a different mechanism, apparently through the action of the chromosomal mazEF system itself. Furthermore, the introduction of lysogens into a growing non-lysogenic culture is lethal to mazEF but not for mazEF + cultures. Thus, although mazEF action causes individual cells to die, upon phage growth this is generally beneficial to the bacterial culture because it causes P1 phage exclusion from the bacterial population. These results provide additional support for the view that bacterial cultures may share some of the characteristics of multicellular organisms.Communicated by W. Arber  相似文献   

11.
    
Summary Eight ilvC transducing phages generated from E. coli K12 secondary site lysogens have been analysed genetically and physically. Two of them carry, in addition, the rho gene and its promotor region, but not the cya gene. The ilvO603 mutation has been located between ilvG and ilvE. Electrophoretic analysis of the proteins synthesized by these phages in a system of UV irradiated cells allowed us to assign molecular weights of 55000 and 66000 daltons to the ilvC and the ilvD gene products, respectively, and to show that an ilvG-encoded polypeptide of 60000 daltons is made from an ilvO - but not from an ilvO + phage. The expression of the ilvG gene is discussed in the light of the recent finding of a promoter-attenuator region lying upstream to ilvG. Finally, we have found that one of the ilv phages does not have the classical structure of a transducing phage.  相似文献   

12.
Infectivity of phage P2 DNA in presence of helper phage   总被引:11,自引:0,他引:11  
Summary Phenol extracted deoxyribonucleic acid of temperate bacteriophage P2 infects E. coli strains C and K 12 with about equal efficiency. Infection occurs only if the bacteria exposed to P2 DNA are simultaneously infected with a related helper phage. Deoxyribonuclease completely destroys the infectivity of the DNA extract. The kinetics of the development of competence and the dependence of the number of infectious units on the multiplicity of infection of helper phage are compared with those of the DNA system. The molecular weight of P2 DNA was determined by sedimentation in a sucrose density gradient to be 2.20±0.2x107.  相似文献   

13.
    
Summary Host controlled restriction in Escherichia coli can be relieved by pre-infecting restricting cells with modified helper phages. This process, in which intact unmodified phage genomes are allowed to escape restriction attack, is mediated by a newly identified function called ral. The ral gene has been located by deletion mapping between cIII and N. Efficient expression of the ral gene requires the product of the regulator gene N. Polyacrylamide gel analysis of the proteins specified by the cIII-N region failed to reveal the product of the ral gene, but demonstrated that protein Ea10 is encoded by a gene located immediately to the left of ral. From these results the map order cIII-Ea10-ral-T L1-N was deduded. Ral specifically alleviates restriction in E. coli K and E. coli B, but does not affect restriction systems EcoRI, EcoRII and EcoP1. In addition, ral enhances the modification activity of the EcoK and EcoB restriction enzymes: we observed that efficient modification of progeny phages obtained by propagating unmodified phages in r- m+ hosts, is dependent upon the presence of ral. We thus conclude that the ral gene product acts by modulating the restriction and modification activities of the type I restriction systems in E. coli, and the possible mechanisms will be discussed.  相似文献   

14.
Summary A soluble enzyme fraction prepared from T7-infected E. coli is able to initiate DNA synthesis on circular single-stranded phage DNA. The product synthesized in vitro is a full-length linear complementary strand as judged by alkaline sucrose gradient analysis. DNA synthesis requires the products of the phage genes 4 and 5, Mg++, dNTPs and rNTPs; however, ATP by itself can almost completely satisfy the rNTP requirement. The gene 4 product is essential for DNA chain initiation on unprimed single-stranded DNA, but is dispensable for the replication of a X174 DNA-RNA hybrid. The enzyme system from T7-infected cells does not discriminate between the DNA templates from phages X174, M13 or fd and is also capable of replicating native T7 DNA. However, a striking difference with regard to the template DNA is revealed by complementation analysis. Extracts of T7 mutant-infected cells complement each other only with T7 DNA but not with X174 DNA as template.Abbreviations rNTP ribonucleoside triphosphate - dNTP deoxyribonucleoside triphosphate - BSA bovine serum albumin  相似文献   

15.
Summary A strain of Haemophilus influenzae, called hpm - inhibits the growth of phage HP1c1 but not S2. This inhibition is overcome by HP1c1ph mutants. Phage HP1c1 adsorbs normally to hpm - cells but only a small fraction of infected cells produce phage with a normal burst size or become lysogenic. When hpm - strains lysogenic for HP1c1 are induced, 100% of the cells yield phage. There is no degradation of phage DNA after infection of hpm - cells and HP1c1 can normally grow when its DNA is introduced into hpm - by transfection. The most probable explanation is that in hpm - cells the penetration of phage DNA is blocked. The hpm - property behaves as as unstable mutation.  相似文献   

16.
Two types of trp phages have been used as model systems to investigate ways of optimising the expression of bacterial genes from transducing phage genomes.Excellent yields of trp enzymes were achieved by infecting a trpR host with Q or Q Q S derivatives of trpAM1, which expresses its trp genese exclusively from the trp promoter. The five trp geneproducts constituted more than 50% of the total soluble protein of infected cells under these conditions, and an even higher proportion of the protein synthesized after infection. In a trpR + host, phage DNA replication was easily able to override tryptophan-mediated repression by titration of the trp repressor protein. N derivatives of trp phages carrying the trp promoter were equally productive, while having the advantage of being much simpler to construct and propagate.  相似文献   

17.
Summary Escherichia coli cells lysogenic for temperate phage HK239 exclude phages , HK022, P1 vir, P2, and rII mutants of phage T4. After mutagenic treatment, four isolates were obtained for their inability to exclude T4rII. It is shown that this mutation, designated exc, is located in the prophage HK239, and that, it also abolishes the exclusion of phages , HK022, P1 vir, and P2.  相似文献   

18.
Coordinate expression of Escherichia coli dnaA and dnaN genes   总被引:4,自引:0,他引:4  
Summary The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lysogenic dnaN59 cells at the nonpermissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene fuction. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA - dnaN + phages remains weak upon simultaneous infection with dnaA + dnaN - phages. Thus the insertion and deletion in the dnaA gene influence in cis the expression of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.  相似文献   

19.
Summary The UV-sensitivity of phage and its infectious DNA have been compared in experiments involving infection of normal cells by phage and transfection of lysozyme-EDTA spheroplasts or Ca++-treated cells by phage DNA. It is shown that UV-irradiated DNA undergoes extensive HCR. Since intact phage and free phage DNA have the same survival after UV-irradiation in Hcr- spheroplasts and cells, resp., and since survival is also identical in Ca++-treated Hcr+ cells it is concluded that DNA in solution or packaged in the phage head provides the same target for the induction of lethal UV lesions. This conclusion is supported by the observation that cysteamine provides a similar radioprotection to the intact phage and its free DNA. Spheroplasts of Hcr+ cells, however, have an HCR capacity reduced by about 20% when compared with normal or Ca++-treated cells. Moreover, UV-reactivation of irradiated DNA, which is absent in spheroplasts, occurs efficiently in Ca++-treated cells. Possible reasons for the physiological difference between spheroplasts and normal cells are discussed. c-mutations, which are readily induced by UV in phage assayed with E. coli mul -, could not be induced in DNA when assayed with spheroplasts or Ca++-treated cells of this strain. No mutants were also found with DNA extracted from UV-irradiated phage. The significance of the mode of entry of UV-irradiated DNA into a cell for the production of mutations is discussed.  相似文献   

20.
Summary A nonlysogenic cell has twenty fold higher (26% versus 1.3%) probability to survive phage infection than entry of the same genome via conjugation (prophage infection). When the entering genome bears a cIII- mutation, this difference increases to one hundred fold (6% versus 0.06%). A lysogenic im- cell harbouring a defective prophage able to synthetize anti-immunity (product of gene tof) has ten fold higher probability to survive prophage infection than phage infection (20% versus 2%). Here, cIII- mutation does not affect the survival. When the cell is simultaneously infected with the phage and prophage, the decision of the phage whether to enter the lytic cycle (in im- cells) or not (in nonlysogens) is always epistatic to that of the prophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号