首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.  相似文献   

2.
In search of a reliable drying method, which might be used evenunder field conditions, microwave drying was compared to freeze-dryingof plant material. Leaves of Ananas comosus and Avicennia germinansas well as buds and phloem of Acer pseudoplatanus were usedand checked for one or more of the following substances: sugars,sugar alcohols, organic and amino acids, total nitrogen, andglycinebetaine. With most samples good agreement was achieved between the twodrying methods. Only in the case of the Ananas comosus leaves,which exhibited low pH and high water content, did appreciabledifferences occur in organic and amino acids. Besides that,sucrose was the compound most susceptible to alterations, whichwas especially evident when leaves of Sambucus nigra were driedin the two different compartments (condenser compartment, dryingbell jar) of the freeze-dryer in use. For Ananas comosus leaf samples it was shown that microwavingcan also be used prior to extraction of tissue sap. Key words: Microwave, freeze-drying, drying method, tissue sap, organic solutes  相似文献   

3.
The scanning electron microscope appearances and shrinkage of blocks of canine endocardium prepared by freeze-drying directly, by freeze-drying after replacing tissue water with tertiary butanol (2-methyl propan-2-ol) and by critical point drying were compared. All three methods demonstrated endothelial cells which showed nuclear prominences, microvilli and intercellular boundaries. The microvilli varied in size and number from dog to dog but were generally less well defined in specimens freeze-dried from water. Shrinkage due to t-butanol dehydration was significantly less than that which occurred in ethanol in the critical point drying method. Overall the reduction in surface area was significantly less in specimens freeze-dried directly at -65 C (6.8%) than in those dried from t-butanol at -20 C (15.4%) and those prepared bly critical point drying (22.1%). However the amount of shrinkage observed in t-butanol treated tissue was not significantly different from that which was critical point dried. It was not possible to distinguish between comparable samples prepared by these two methods on the basis of their scanning electron microscopic appearances. Thus the relative simplicity and convenience of the t-butanol method, together with its saving of time, its use of standard freeze-drying equipment and the avoidance of ice-crystal artefact justify its consideration as an alternative method of preparing wet biological tissue for scanning electron microscopy.  相似文献   

4.
The scanning electron microscope appearances and shrinkage of blocks of canine endocardium prepared by freeze-drying directly, by freeze-drying after replacing tissue water with tertiary butanol (2-methyl propan-2-01) and by critical point drying were compared. All three methods demonstrated endothelial cells which showed nuclear prominences, microvilli and interoellular boundaries. The microvilli varied in six and number from dog to dog hut were generally less well defined in specimens freeze-dried from water. Shrinkage due to t-butanol dehydration was significantly less than that which occurred in ethanol in the critical point drying method. Overall the reduction in surface area was significantly less in specimens freeze-dried directly at -65 C (6.8%) than in those dried from t-butanol at -20 C (15.4%) and those prepared by critical point drying (22.1%). However the amount of shrinkage observed in t-butanol treated tissue was not significantly different from that which was critical point dried. It was not possible to distinguish between comparable samples prepared by these two methods on the basis of their scanning electron microscopic appearances. Thus the relative simplicity and convenience of the t-butanol method, together with its saving of time, its use of standard freeze-drying equipment and the avoidance of ice-crystal artefact justify its consideration as an alternative method of preparing wet biological tissue for scanning electron microscopy.  相似文献   

5.
The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. “Hot” and “cold” spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of −25°C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scaleup issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.  相似文献   

6.
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.  相似文献   

7.
影响生物制品冻干粉针剂水分的探讨   总被引:3,自引:0,他引:3  
探讨生物制品冻干粉针剂样品放置一时间后残余水分增高的原因。进行了水分测定,真空度检测,二甲硅油和丁基橡胶药用瓶塞干燥失重的检测。冻干后每只丁基橡胶药用瓶塞平均含水分0.00224g。结果表明丁基橡胶药用瓶塞灭苗,干燥和冻干过程中去除水分不彻底是引起样品中水分升高的直接原因。  相似文献   

8.
Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.  相似文献   

9.
Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.  相似文献   

10.
In this study, we extracted polysaccharide from Sporophyll of Undaria pinnatifida Suringar and performed it to reveal the effect of dehydration mode on polysaccharide free radical scavenging ability. The polysaccharide extract was dried by vacuum freeze-drying, vacuum drying and hot-air drying methods, respectively. The result elucidated that these products by three kinds of drying methods showed different clearance abilities in DPPH, OH and ABTS scavenging free radicals tests, with the following order: vacuum freeze-drying > vacuum drying > hot-air drying. They showed similar characteristic in Infrared Spectroscopy and X-ray Diffraction spectrum, but have different interaction patterns with water in Low Field Nuclear Magnetic Resonance. The scavenging ability difference may due to the amount of bound water and immobilized water in dried status. The absence of immobilized water on polysaccharide would facilitate the functional groups to reach to the free water molecule and help for the polysaccharide to form triple helix stereo-configuration in solution.  相似文献   

11.
Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h?1·m?2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h?1·m?2, an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.  相似文献   

12.
This study aims to investigate the effect of the ice nucleation temperature on the primary drying process using an ice fog technique for temperature-controlled nucleation. In order to facilitate scale up of the freeze-drying process, this research seeks to find a correlation of the product resistance and the degree of supercooling with the specific surface area of the product. Freeze-drying experiments were performed using 5% wt/vol solutions of sucrose, dextran, hydroxyethyl starch (HES), and mannitol. Temperature-controlled nucleation was achieved using the ice fog technique where cold nitrogen gas was introduced into the chamber to form an “ice fog”, there-by facilitating nucleation of samples at the temperature of interest. Manometric temperature measurement (MTM) was used during primary drying to evaluate the product resistance as a function of cake thickness. Specific surface areas (SSA) of the freeze-dried cakes were determined. The ice fog technique was refined to successfully control the ice nucleation temperature of solutions within 1°C. A significant increase in product resistance was produced by a decrease in nucleation temperature. The SSA was found to increase with decreasing nucleation temperature, and the product resistance increased with increasing SSA. The ice fog technique can be refined into a viable method for nucleation temperature control. The SSA of the product correlates well with the degree of supercooling and with the resistance of the product to mass transfer (ie, flow of water vapor through the dry layer). Using this correlation and SSA measurements, one could predict scaleup drying differences and accordingly alter the freeze-drying process so as to bring about equivalence of product temperature history during lyophilization.  相似文献   

13.
Due to the structure and the composition of Paecilomyces variotii, the mycelia of this fungus could have potential applications as ingredients in wettable foods. For this use, drying could be employed, justifying the study of thermal behavior of P. variotii. The objectives of this work were to perform a study of thermal behavior of P. variotii isolates, to evaluate the hydration properties of these mycelia and to analyze the effect of different technological parameters on the latter properties. Wet cultures exhibited a wide endothermic transition, with mean values of peak temperature of 61°C and denaturation enthalpy of 4 J/g dry matter. Initial (50°C) and final (80°C) temperatures of the endothermic transition were used to dry the mycelia. Freeze-drying was also assayed. For all dried mycelia, a decrease in denaturation enthalpy between 40 and 50% was observed for drying at 50°C and freeze-drying, and a drastic decrease of almost 100% for drying at 80°C. According to the hydration properties, wet mycelia exhibited water holding capacity (WHC) value of 45 g water/g dry matter. Significant differences among dried mycelia, resulting WHC values in order: 50°C > freeze-dried > 80°C (p < 0.05) were revealed for each P. variotii strain. Fungi obtained by drying at 50 C and by freeze-drying, showed a rapid water absorption (t 1/2 < 0.1 min). Ionic strength, pH and particle size of dried mycelia influenced the hydration properties.  相似文献   

14.
Sugars inhibit protein unfolding during the drying step of lyophilization by replacing hydrogen bonds to the protein lost upon removal of water. In many cases, polymers fail to inhibit dehydration-induced damage to proteins because steric hindrance prevents effective hydrogen bonding of the polymer to the protein's surface. However, in certain cases, polymers have been shown to stabilize multimeric enzymes during lyophilization. Here we test the hypothesis that this protection is due to inhibition of dissociation into subunits during freezing. To test this hypothesis, as a model system we used mixtures of lactate dehydrogenase isozymes that form electrophoretically distinguishable hybrid tetramers during reversible dissociation. We examined hybridization and recovery of catalytic activity during freeze-thawing and freeze-drying in the presence of polymers (dextran, Ficoll, and polyethylene glycol), sugars (sucrose, trehalose, glucose), and surfactants (Tween 80, Brij 35, hydroxy-propyl beta-cyclodextrin). The surfactants did not protect LDH during freeze-thawing or freeze-drying. Rather, in the presence of Brij 35, enhanced damage was seen during both freeze-thawing and freeze-drying, and the presence of Tween 80 exacerbated loss of active protein during freeze-drying. Polymers and sugars prevented dissociation of LDH during the freezing step of lyophilization, resulting in greater recovery of enzyme activity after lyophilization and rehydration. This beneficial effect was observed even in systems that do not form glassy solids during freezing and drying. We suggest that stabilization during drying results in part from greater inherent stability of the assembled holoenzyme relative to that of the dissociated monomers. Polymers inhibit freezing-induced dissociation thermodynamically because they are preferentially excluded from the surface of proteins, which increases the free energy of dissociation and denaturation.  相似文献   

15.
Studies of numerous proteins with infrared spectroscopy have documented that unfolding is a general response of unprotected proteins to freeze-drying. Some proteins that are unfolded in the dried solid aggregate during rehydration, whereas others refold. It has been proposed for the latter case that aggregation is avoided because refolding kinetically outcompetes intermolecular interactions. In contrast, with proteins that normally aggregate after rehydration, minimizing unfolding during freeze-drying with stabilizer has been shown to be needed to favor the recovery of native protein molecules after rehydration. The purpose of the current study was to examine first the opposite situation, in which a denaturant is used to foster additional unfolding in the protein population during freeze-drying. If the protein is not intrinsically resistant to aggregation under the study conditions (e.g., because of intermolecular charge repulsion) and the denaturant does not disrupt intermolecular interactions during rehydration, this treatment should favor aggregation upon rehydration. With infrared spectroscopy we found that at concentrations of the denaturant Na thiocyanate (NaSCN) that only slightly perturbed chymotrypsinogen secondary structure in solution before freeze-drying, there was a large increase in protein unfolding in the dried solid and in protein aggregation measured after rehydration. Bands assigned to intermolecular beta sheet were present in the spectra of samples dried with NaSCN, indicating that aggregation could also arise in the dried solid. By examining the protein structure in the frozen state, we determined that in the absence of NaSCN the protein remains native. NaSCN caused structural perturbations during freezing, without the formation of intermolecular beta sheet, that were intermediate to structural changes noted after freeze-drying. In contrast, samples treated in the presence of NaSCN and sucrose had native-like spectra in the frozen and dried states, and much reduced aggregation after rehydration. These results indicate that during freezing and drying the sugar can counteract and mostly reverse the structural perturbations induced by NaSCN before and during these treatments.  相似文献   

16.
T Ohtomo  T Yamada    K Yoshida 《Applied microbiology》1988,54(10):2486-2491
The effects of drying time during freeze-drying on the outermost cell surface of an encapsulated strain of Staphylococcus aureus S-7 (Smith, diffuse) were investigated, with special attention paid to capsule and slime production. To quantify capsule and slime production, capsule antigen production and cellular characteristics such as growth type in serum-soft agar, cell volume index, and clumping factor reaction were examined. After freeze-drying the colonial morphology of strain S-7 was altered from a diffuse to a compact type in serum-soft agar. In accordance with these changes, the titer of the clumping factor reaction increased while the cell volume index, capsule and slime production, and capsule antigen production were markedly decreased in parallel with the period of freeze-drying. The ability of the strain to adhere to collagen, fibrinogen, and soybean lectin was also compared before and after freeze-drying. Fibrinogen levels slightly increased when 10% skim milk and 2% honey were used as cryoprotective agents and showed a remarkable increase when 0.05 M phosphate buffer was used as a control. Also, the ability of strain S-7 to adhere to soybean lectin declined, whereas no changes were observed for collagen under any conditions. Strain S-7 was phage nontypable before freeze-drying but the number of typable cells increased after freeze-drying; phage-typable cells reacted to phage 52 alone after 5 h of freeze-drying, but additional cells also proved to be phage typable to phage 42E after 10 h. Electron micrographs indicated that strain S-7, an encapsulated strain, was converted to an unencapsulated state after freeze-drying.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study was aimed at establishment of influence of a carrier-sodium glutamate and of changes introduced during the process of freeze-drying on survival of BCG bacilli during lyophilization, as well on thermostability and homogeneity of the vaccine and its immunogenicity. It was found that appropriate drying of the vaccine after freeze-drying performed in higher temperature influences favorably its thermostability. Concentration of the carrier is significantly influential for survival of bacilli during freeze-drying. Vaccine containing 1% of sodium glutamate was characterized by best thermostability, homogeneity and high survival of bacilli during freeze-drying. These parameters were keeping on a high level also one year after expiration date. It was shown that there exists a proportional dependence between immunogenicity of the vaccine measured indirectly by intensiveness of tuberculin allergization and number of live particles of BCG contained in vaccination dose.  相似文献   

18.
The effects of drying time during freeze-drying on the outermost cell surface of an encapsulated strain of Staphylococcus aureus S-7 (Smith, diffuse) were investigated, with special attention paid to capsule and slime production. To quantify capsule and slime production, capsule antigen production and cellular characteristics such as growth type in serum-soft agar, cell volume index, and clumping factor reaction were examined. After freeze-drying the colonial morphology of strain S-7 was altered from a diffuse to a compact type in serum-soft agar. In accordance with these changes, the titer of the clumping factor reaction increased while the cell volume index, capsule and slime production, and capsule antigen production were markedly decreased in parallel with the period of freeze-drying. The ability of the strain to adhere to collagen, fibrinogen, and soybean lectin was also compared before and after freeze-drying. Fibrinogen levels slightly increased when 10% skim milk and 2% honey were used as cryoprotective agents and showed a remarkable increase when 0.05 M phosphate buffer was used as a control. Also, the ability of strain S-7 to adhere to soybean lectin declined, whereas no changes were observed for collagen under any conditions. Strain S-7 was phage nontypable before freeze-drying but the number of typable cells increased after freeze-drying; phage-typable cells reacted to phage 52 alone after 5 h of freeze-drying, but additional cells also proved to be phage typable to phage 42E after 10 h. Electron micrographs indicated that strain S-7, an encapsulated strain, was converted to an unencapsulated state after freeze-drying.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this research was to evaluate a new wireless and battery-free sensor technology for invasive product temperature measurement during freeze-drying. Product temperature is the most critical process parameter in a freeze-drying process, in particular during primary drying. The product temperature over time profile and a precise detection of the endpoint of ice sublimation is crucial for comparison of freeze-drying cycles. Traditionally, thermocouples are used in laboratory scale units whereas resistance thermal detectors are applied in production scale freeze-dryers to evaluate temperature profiles. However, both techniques show demerits with regard to temperature comparability and biased measurements relative to vials without sensors. A new generation of wireless temperature sensors (Temperature Remote Interrogation System, TEMPRIS) were used in this study to investigate for the first time their value when applied to freeze-drying processes. Measurement accuracy, capability of accurate endpoint detection and effect of positioning were delineated by using product runs with sucrose, mannitol and trehalose. Data were compared to measurements with 36-gauge thermocouples as well as to non-invasive temperature measurement from Manometric Temperature Measurements. The results show that the TEMPRIS temperature profiles were in excellent agreement to thermocouple data when sensors were placed center bottom in a vial. In addition, TEMPRIS sensors revealed more reliable temperature profiles and endpoint indications relative to thermocouple data when vials in edge position were monitored. The results of this study suggest that TEMPRIS may become a valuable tool for cycle development, scale-up and routine manufacturing in the future.  相似文献   

20.
This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号