首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tandrup  T. 《Brain Cell Biology》2002,31(1):73-78
To test the hypothesis that a somatofugal wave of atrophy moving distally in the axon of primary sensory neurons leads to loss of myelinated nerve fibers in acrylamide neuropathy, rats (N = 18) were intoxicated with an initial dose of 75 mg acrylamide per kg body weight followed by daily treatment with 30 mg/kg for three, six and 12 days. Ten age matched saline treated rats served as controls. Numbers and mean volumes of A- and B-cell perikarya of the L5 dorsal root ganglion, numbers of myelinated axons and the mean cross sectional myelinated axon area 3 and 18 mm from the ganglion in the dorsal root and in the sural nerve were estimated using stereological techniques. After three days no changes in the number or size of primary sensory perikarya or myelinated axons were observed. However, after six days 11% of the A-cell perikarya showed signs of chromatolysis (P < 0.001). After 12 days the rats showed signs of ataxia and 23% (P < 0.001) of A-cell perikarya were chromatolytic. There was a tendency for atrophy of the mean perikaryal volume of A-cells (2P = 0.059). The size-frequency distributions of axonal area of myelinated fibers in the dorsal root 3 mm from the ganglion were displaced to the left towards smaller sizes (25–50% quartile: 2P < 0.005 and 75–100% quartile: 2P < 0.05). In conclusion, the primary structural event in acute acrylamide intoxication is chromatolysis of A-cells of the dorsal root ganglion without the occurrence of somatofugal axonal atrophy.  相似文献   

2.
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997.  相似文献   

3.
Anterograde Axonal Transport in Rats During Intoxication with Acrylamide   总被引:5,自引:4,他引:1  
Abstract: Anterograde axonal transport was examined in sensory nerves of rats intoxicated with a low dose (group I) or a high dose (group II) of acrylamide. After injection of either [35S]methionine and [3H]fucose or [3H]proline into the dorsal root ganglia of the 5th lumbar roots, distribution of protein label was measured in 3-mm segments of the sciatic nerve at intervals of 2 h, 4 h, 10 days, and 26 days. No difference in ganglion incorporation was present at 4 h, and the fast transport velocity of methionine label also remained normal [14.7 ± 1.3 mm/h (mean ± SD) in controls versus 14.6 ± 0.3 mm/h and 15.4 ± 1.2 mm/h in acrylamide group I and II, respectively]. Neither was there any decrease in transport velocity of proline label of slow component b (4.18 ± 0.29 mm/day in controls versus 4.29 ± 0.17 mm/d and 4.22 ± 0.29 mm/day in acrylamide group I and II, respectively). In slow component a, however, a significant reduction in the fractional amount of proline label was found (20.8 ± 4.0% in controls versus 17.6 ± 14.9% and 9.7 ± 5.9% in acrylamide group I and II, respectively). Again no decrease in transport velocity was observed (1.03 ± 0.02 mm/day in controls versus 1.06 ± 0.08 mm/day and 1.07 ± 0.03 mm/day in acrylamide group I and II, respectively), and closer inspection of the activity along the nerve did not reveal any alteration in skewness or ‘peakedness’ of the distribution curve. The reduction in amount of protein carried in the slow axonal transport component in rats with severe acrylamide neuropathy (group II) could be associated with fibre breakdown at a late stage of the neuropathic process. The most important consequence of the study is, however, that in contrast to previous suggestions, during acrylamide intoxication no changes are present in protein incorporation or in anterograde axonal transport which can explain the initial pathological or functional abnormalities of the distal axons.  相似文献   

4.
The motor, sensory, and postganglionic sympathetic neurons forming the left ulnar and right radial nerves of long-tailed macaques (Macaca fascicularis) and pigtailed macaques (Macaca nemestrina) were localized by the horseradish peroxidase method of tracing neuronal connections. The ulnar and radial motoneurons formed a longitudinal column of variable extent in the lateral part of the ventral horn. In most animals, the ulnar motoneurons extended between the caudal ends of the C7 and T1 segments; the radial motoneurons extended between the rostral level of the C4 and the middle part of T1 segments. Although there were areas of overlap in the spinal distribution of ulnar and radial motoneurons, the ulnar motoneurons were located more dorsally and dorsolaterally than were the radial motoneurons. In most animals, labelled sensory neurons whose axons run with the ulnar nerve occurred in the C8–T4 dorsal root ganglia, and those whose axons run with the radial nerve occurred in the C5–T3 ganglia. The radial sympathetic neurons were distributed in stellate through T7 paravertebral sympathetic ganglia, and the ulnar sympathetic neurons were distributed in stellate through T4 paravertebral sympathetic ganglia. Though the motor, sensory, and sympathetic neurons forming the ulnar and radial nerves had wide segmental distributions, all showed peak frequencies in two segments. The cross-sectional areas of the motor, sensory, and postganglionic sympathetic neurons forming the radial and ulnar nerves were measured in the animal that showed the greatest amount of labelling for each nerve. The ulnar and radial motoneurons had a similar range of sizes, with cross-sectional areas between 120 and 2,160 μm2. Most were smaller than 900 μm2. The sensory neurons forming the ulnar and radial nerves also displayed a similar range of sizes, measuring between 120 and 3,360 μm2 in cross-sectional area. Most neurons measured between 201 and 800 μm2. The ulnar sympathetic neurons measured between 120 and 840 μm2, and the radial neurons between 120 and 2,120 μm2. In both cases, most neurons measured between 120 and 600 μm2. The mean cross-sectional area for the radial sympathetic neurons was, however, larger than that for the ulnar sympathetic neurons.  相似文献   

5.
Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection) or sural nerve (sensory protection). The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve.  相似文献   

6.
Alterations in the axonal transport of proteins, glycoproteins, and gangliosides in sensory neurons of the sciatic nerve were examined in adult male rats exposed to acrylamide (40 mg ip/kg body wt/d for nine consecutive days). Twenty-four hours after the last dose, the L5 dorsal root ganglion (DRG) was injected with either [35S]methionine to label proteins or [3H]glucosamine to label glycoproteins and gangliosides. The downflow patterns of radioactivity for [35S]methionine-labeled proteins and [3H]glucosamine-labeled gangliosides were unaltered by acrylamide treatment. In contrast, the outflow pattern of labeled glycoproteins displayed a severely attenuated crest with no alteration in velocity, suggesting a preferential transfer with the unlabeled stationary components in the axolemma. Retrograde accumulation of transported glycoproteins and gangliosides was unaltered for at least 6 h; however, by 24 h, there was a 75% decrease in the amount of accumulated material. The accumulation of [35S]methionine-labeled proteins was not altered. Autoradiographic analysis revealed an acrylamide-induced paucity of transported radiolabeled glycoproteins selectively in myelinated axons with no effect on "nonmyelinated" axons. The pattern of transported proteins was similar in both control and acrylamide-exposed animals. These results suggest a preferential inhibition of glycosylation or axonal transport of glycoproteins in neurons bearing myelinated axons. More importantly, it suggests that interpretations of axonal transport data must be made with the consideration of alterations in selective nerve fibers and not with the tacit assumption that all fibers in the nerve population are equally affected.  相似文献   

7.
On the basis of the specific [3H]quinuclidinyl-benzilate binding, the transport of muscarinic cholinergic receptors has been demonstrated in the ventral horn, sciatic nerve and in the 3 mm segments proximal and distal to the ligature of rat sciatic nerves ligated for 24 h (a) without electrolytic lesion, (b) six days after lesion of the spinal ganglia, (c) six days after lesion of the motoric axons, and (d) six days after transection of the sciatic nerve. The distribution of these receptors was also studied in the ventral spinal horn, dorsal root sensory axons, spinal ganglia and sciatic nerve of rabbit.Our results suggest that the receptors are transported in the sciatic nerve of rat. This transport consists of a large anterograde, and a discrete retrograde flow of muscarinic cholinergic receptors. Most of the receptors are possibly synthesized in the motoneuron cell bodies and migrate in the motoric axons; to a lesser extent they may also be synthesized in the cell bodies of the dorsal root ganglia and migrate in the sensory axons of the sciatic nerve.  相似文献   

8.
The bladder of adult female rats receives ~16,000 axons (i.e., is the target of that many ganglion neurons) of which at least half are sensory. In nerves containing between 40 and 1200 axons cross-sectional area is proportional to number of axons; >99% of axons are unmyelinated. A capsule forms a seal around nerves and ends abruptly where nerves, after branching, contain ~10 axons. A single blood vessel is present in many of the large nerves but never in nerves of <600 axons. The number of glial cells was estimated through the number of their nuclei. There is a glial nucleus profile every 76 axonal profiles. Each glial cell is associated with many axons and collectively covers ~1,000 μm of axonal length. In all nerves a few axonal profiles contain large clusters of vesicles independent of microtubules. The axons do not branch; they alter their relative position along the nerve; they vary in size along their length; none has a circular profile. All the axons are fully wrapped by glial cells and never contact each other. The volume of axons is larger than that of glial cells (55%–45%), while the surface of glial cell is twice as extensive as that of axons; there are ~2.27 m2 of axolemma and ~4.60 m2 of glial cell membrane per gram of nerve. Of the mitochondria of a nerve ~3/4 are in axons and ~1/4 in glial cells.  相似文献   

9.
Using fluorescent double labelling technique with one tracer applied to the greater splanchnic nerve and a second to the ventral or dorsal spinal nerve ramus at the T9 level, it was shown that two separate populations of sensory nerve cell bodies in the T9 dorsal root ganglion were projecting to the splanchnic nerve and spinal rami, respectively. Only two double labelled cells were detected. The results support the theory that spinal and/or supraspinal interactions and not dichotomizing sensory axons are responsible for referred pain.  相似文献   

10.
Summary The ganglionated plexus of the trachea of mice was studied quantitatively with a histochemical method that stains electively the ganglion nerve cells in whole-mount preparations. The plexus lies exclusively over the muscular part of the trachea, dorsal to the muscle itself, and it varies considerably in pattern and extent between individual animals. In young adult mice the plexus contains on average 235 neurons, occurring singly or gathered in packed ganglia. The ganglion neurons are relatively small, the profile area of three quarters of them measuring between 150 and 275 m2 with an average of 251 m2. In ageing mice the average number of ganglion neurons is the same as in young animals; however, cell sizes are markedly increased, the average being 341 m2. Among the ultrastructural features of the ganglia, is a capsule (perineurium) of very regular structure, the presence of collagen, capillaries and myelinated axons inside the ganglia, and the presence of only few and short dendrites, some of which are abutted by synapsing nerve endings.  相似文献   

11.
In the distal parts of the urinary tract, nerves containing calcitonin gene-related peptide (CGRP) or substance P (SP) are sensory with their cell bodies located in lumbosacral dorsal root ganglia. These two neuropeptides are recognised as being present in pelvic sensory nerves, and may be involved in the mediation of pain, stretch and/or vasodilatation. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive (-ir) for CGRP and SP in the urinary bladder and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made for CGRP-ir and SP-ir fibres innervating the dome, body and base of the urinary bladder. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for CGRP and SP. There were very few immunoreactive axons in the dome and the overall density of innervation increased progressively towards the base of the bladder. The density of innervation in the aged rats revealed a slight reduction in CGRP and SP innervation of the detrusor muscle but was otherwise comparable to the young group. However, immunostaining of the lumbosacral dorsal root ganglia revealed that the percentage of CGRP- and SP-ir neuronal profiles showed a significant (P < 0.05) reduction from (mean +/- S.D) 44.5 +/- 2; 23.3 +/- 2 in young adult to 25.0 +/- 2.9; 14.8 +/- 1.6 in aged rats, respectively. These findings suggest that the involvement of CGRP and SP in urinary bladder innervation is relatively unchanged in old age, but their expression in dorsal root ganglion neurons is affected by age. The afferent micturition pathway from the pelvic region via these lumbosacral ganglia may be perturbed as a result.  相似文献   

12.
Charcot–Marie–Tooth (CMT) is the most common inherited peripheral neuropathy, affecting approximately 2.8 million people. The CMT leads to distal neuropathy that is characterized by reduced motor nerve conduction velocity, ataxia, muscle atrophy and sensory loss. We generated a mouse model of CMT type 2E (CMT2E) expressing human neurofilament light E396K (hNF‐LE396K), which develops decreased motor nerve conduction velocity, ataxia and muscle atrophy by 4 months of age. Symptomatic hNF‐LE396K mice developed phenotypes that were consistent with proprioceptive sensory defects as well as reduced sensitivity to mechanical stimulation, while thermal sensitivity and auditory brainstem responses were unaltered. Progression from presymptomatic to symptomatic included a 50% loss of large diameter sensory axons within the fifth lumbar dorsal root of hNF‐LE396K mice. Owing to proprioceptive deficits and loss of large diameter sensory axons, we analyzed muscle spindle morphology in presymptomatic and symptomatic hNF‐LE396K and hNF‐L control mice. Muscle spindle cross‐sectional area and volume were reduced in all hNF‐LE396K mice analyzed, suggesting that alterations in muscle spindle morphology occurred prior to the onset of typical CMT pathology. These data suggested that CMT2E pathology initiated in the muscle spindles altering the proprioceptive sensory system. Early sensory pathology in CMT2E could provide a unifying hypothesis for the convergence of pathology observed in CMT.  相似文献   

13.
The morphology of the pudendal nerve was quantified in adult male and female rats. The sensory branch of the pudendal nerve was about three times as large in cross section in males as in females, and the motor branch was about five times as large. Electron microscopy was used to determine the ultrastructural bases of these gross size differences. Differences that were found included greater packing density of both myelinated and unmyelinated axons in females, larger myelinated and unmyelinated axons in males, larger myelin sheaths of sensory axons in males, more numerous myelinated axons in both branches of males, and more numerous unmyelinated axons in the sensory branch of males. There was also some indication that myelinated sensory axons were more likely to branch in the dorsal clitoral nerve of females than in the homologous nerve of males. Morphological differences in the structure of pudendal axons, their associated Schwann cells, and the extracellular matrix as well as differences in sensory and motor axonal number all have potential implications for the sexual differentiation of the central nervous system and behavior.  相似文献   

14.
In the distal parts of the urinary tract, nerves containing nitric oxide (NO) are either postganglionic parasympathetic nerves, with cell bodies in the major pelvic ganglia, or sensory nerves with cell bodies in the lumbosacral dorsal root ganglia. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive for neuronal nitric oxide synthase (NOS) in the urinary bladder, distal ureter and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made of NOS fibres innervating the dome, body and base of the urinary bladder and distal ureter. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for NOS. The dome and the body regions, in both age groups, contained no NOS-immunoreactive axons. The bladder base and distal ureter in young adults showed sparse to moderate numbers of fibres immunoreactive to NOS within the urothelium and in the subepithelium and muscle coat. In the aged rat there were slight reductions in the densities of NOS-immunoreactive nerves in all three regions. In the lumbosacral dorsal root ganglia, the percentage of NOS-immunoreactive neuronal profiles showed a significant reduction from 4.6 +/- 0.2% in young adult to 2.7 +/- 0.2% (means +/- S.E.M) in aged rats. These findings suggest that the effects of NO on the bladder and distal ureteric musculature and also its expression in dorsal root ganglion neurons are affected in aged rats and that the micturition reflex may be perturbed as a result.  相似文献   

15.
SUMMARY 1. The plasticity of sensory neurons following the injury to their axons is very important for prognosis of recovery of afferent fibers with different modality. It is evident that the response of dorsal root ganglion (DRG) neurons after peripheral axotomy is different depending on the deficiency in neurotrophic factors from peripheral region. The loss of cells appears earlier and is more severe in B-cells (small, dark cells with unmyelinated axons) than in A-cells (large, light cells with myelinated axons).2. We studied using immunohistochemical methods the response of DRG neurons to dorsal rhizotomy and combined injury of central and peripheral neuronal processes. A quantitative analysis of DRG neurons tagged by the selective markers isolectin B4 (IB4) and the heavy molecular component of the neurofilament triplet (NF200) antibody, selective for subpopulations of small and large/medium DRG neurons, respectively, was performed after dorsal rhizotomy, peripheral axotomy, and their combination.3. The number of NF200+-neurons is reduced substantially after both dorsal rhizotomy and peripheral axotomy, while the decrease of IB4+-neurons is observed only in combined injury, i.e., dorsal rhizotomy accompanied with sciatic nerve injury.4. Our results show that distinct subpopulations of DRG neurons respond differently to the injury of their central processes. The number of NF200+-neurons decreases to greater degree following dorsal rhizotomy in comparison to IB4+-neurons.  相似文献   

16.
Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is a member of the osteonectin family of proteins. In this study, immunohistochemistry for SPARCL1 was performed to obtain its distribution in the human brainstem, cervical spinal cord, and sensory ganglion. SPARCL1-immunoreactivity was detected in neuronal cell bodies including perikarya and proximal dendrites, and the neuropil. The motor nuclei of the IIIrd, Vth, VIth, VIIth, IXth, Xth, XIth, and XIIth cranial nerves and spinal nerves contained many SPARCL1-immunoreactive (-IR) neurons with medium-sized to large cell bodies. Small and medium-sized SPARCL1-IR neurons were distributed in sensory nuclei of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves. In the medulla oblongata, the dorsal column nuclei also had small to medium-sized SPARCL1-IR neurons. In addition, SPARCL1-IR neurons were detected in the nucleus of the trapezoid body and pontine nucleus within the pons and the arcuate nucleus in the medulla oblongata. In the cervical spinal cord, the ventral horn contained some SPARCL1-IR neurons with large cell bodies. These findings suggest that SPARCL1-containing neurons function to relay and regulate motor and sensory signals in the human brainstem. In the dorsal root (DRG) and trigeminal ganglia (TG), primary sensory neurons contained SPARCL1-immunoreactivity. The proportion of SPARCL1-IR neurons in the TG (mean?±?SD, 39.9?±?2.4%) was higher than in the DRG (30.6?±?2.1%). SPARCL1-IR neurons were mostly medium-sized to large (mean?±?SD, 1494.5?±?708.3?μm2; range, 320.4–4353.4?μm2) in the DRG, whereas such neurons were of various cell body sizes in the TG (mean?±?SD, 1291.2?±?532.8?μm2; range, 209.3–4326.4?μm2). There appears to be a SPARCL1-containing sensory pathway in the ganglion and brainstem of the spinal and trigeminal nervous systems.  相似文献   

17.
Dorsal root ganglia from fetal rats were explanted on collagen-coated coverslips and carried in Maximow double-coverslip assemblies for periods up to 3 months. These cultured ganglia were studied in the living state, in stained whole mounts, and in sections after OsO4 fixation and Epon embedment. From the central cluster of nerve cell bodies, neurites emerge to form a rich network of fascicles which often reach the edge of the carrying coverslip. The neurons resemble their in vivo counterparts in nuclear and cytoplasmic content and organization; e.g., they appear as "light" or "dark" cells, depending on the amount of cytoplasmic neurofilaments. Satellite cells form a complete investment around the neuronal soma and are themselves everywhere covered by basement membrane. The neuron-satellite cell boundary is complicated by spinelike processes arising from the neuronal soma. Neuron size, myelinated fiber diameter, and internode length in the cultures do not reach the larger of the values known for ganglion and peripheral nerve in situ (30). Unmyelinated and myelinated nerve fibers and associated Schwann cells and endoneurial and perineurial components are organized into typical fascicles. The relationship of the Schwann cell and its single myelinated fiber or numerous unmyelinated fibers and the properties of myelin, such as lamellar spacing, mesaxons, Schmidt-Lanterman clefts, nodes of Ranvier, and protuberances, mimic the in vivo pattern. It is concluded that cultivation of fetal rat dorsal root ganglia by this technique fosters maturation and long-term maintenance of all the elements that comprise this cellular community in vivo (except vascular components) and, furthermore, allows these various components to relate faithfully to one another to produce an organotypic model of sensory ganglion tissue.  相似文献   

18.
After injection of the L7 dorsal root ganglion with 3H-leucine, fast axoplasmic transport carries some 3–5 × more labeled materials down the sensory fibers branches entering the sciatic nerve as compared to the dorsal root fiber branches of the neurons. Freeze-substitution preparations taken from the two sides of the lumbar seventh dorsal root ganglia of cats and monkeys showed little difference in the histograms of nerve fiber diameters of the sensory nerve fiber branch of these neurons as compared to the dorsal root fiber branches. A similar density of microtubules and of neurofilaments in the dorsal root and sensory nerve fiber branches over a wide range of fiber diameters was found in electron micrograph preparations. In the absence of an anatomical difference in the fibers to account for the asymmetrical outflow, a functional explanation based on the transport filament model was advanced.  相似文献   

19.
Acrylamide is a neurotoxin known to impair regeneration of axons following nerve crush and to produce structurally abnormal regenerating sprouts. To investigate the mechanism of these abnormalities, protein synthesis and fast axonal transport were studied in acrylamide-intoxicated and control rats 2 weeks after sciatic nerve crush. Using an in vitro preparation of sciatic nerve-dorsal root ganglion, there was no difference in ganglion 3H-leucine incorporation between the two groups. In these preparations of sensory axons, as well as in motor axons studied in vivo, a smaller proportion of rapidly transported radioactivity was carried beyond the crush in the acrylamide-regenerating nerves compared to the control-regenerating nerves. Correlative ultrastructural studies demonstrated that this difference reflected the impaired outgrowth of the acrylamide-regenerating nerves, rather than an abnormality in fast transport. The acrylamide-treated sprouts often developed swellings filled with whorls of neurofilaments; in addition, many sprouts ended in massively enlarged growth cones containing membranous organelles. EM autoradiography showed labeled, rapidly transported organelles accumulated in the neurofilamentous whorls, and therefore suggested that these organelles might be “trapped” or impeded in passage through these regions. However, there was no evidence that the growth cones received insufficient amounts of transported protein; in fact, the distended endings were densely labeled and apparently “ballooned” by transported organelles. These results suggest that acrylamide intoxication does not impair regeneration by diminishing the delivery of rapidly transported materials to the growing tip. Rather, the marked distention of the growth cones is interpreted as the morphological consequence of continued delivery of rapidly transported organelles into sprouts unable to utilize them in outgrowth.  相似文献   

20.
The histological visualization of choline acetyltransferase (CAT) and acetylcholinesterase (AChE) on frozen sections of prostomia of Nereis virens indicate a concentration of cholinergic activity in the anterior brain. Components are probably sensory epithelial cells with cholinergic axons entering the brain in cephalic nerves and efferent cholinergic axons to prostomial muscle leaving the brain in the same nerves. There are also subepidermal cholinergic cells that may be second order motor neurons serving epidermal mucous cells. The smaller, second lobe of the corpora pedunculata and its associated vertical fibre tract are CAT4 and appear continuous, on each side of the cerebral ganglion, with a dorsal and a ventral longitudinal bundle of AChE+ fibers. This system tapers to nothing at the level of the posterior eyes. There is a small AChE+ component to each optic nerve and AChE is present in the nuchal epithelium. These observations are discussed in relation to earlier studies on aminergic and neurosecretory activity in the same ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号