首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Base excision repair (BER) is a major repair pathway in eukaryotic cells responsible for repair of lesions that give rise to abasic (AP) sites in DNA. Pivotal to this process is the 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity of DNA polymerase beta (Pol beta). DNA polymerase lambda (Pol lambda) is a recently identified eukaryotic DNA polymerase that is homologous to Pol beta. We show here that human Pol lambda exhibits dRP lyase, but not AP lyase, activity in vitro and that this activity is consistent with a beta-elimination mechanism. Accordingly, a single amino acid substitution (K310A) eliminated more than 90% of the wild-type dRP lyase activity, thus suggesting that Lys(310) of Pol lambda is the main nucleophile involved in the reaction. The dRP lyase activity of Pol lambda, in coordination with its polymerization activity, efficiently repaired uracil-containing DNA in an in vitro reconstituted BER reaction. These results suggest that Pol lambda may participate in "single-nucleotide" base excision repair in mammalian cells.  相似文献   

2.
DNA polymerase lambda (pol lambda) is a recently discovered nuclear enzyme belonging to the pol X family of DNA polymerases that exhibits a 32% sequence identity with the nuclear DNA repair protein, pol beta. Structural modeling suggests that pol lambda contains the palm, fingers, thumb, and 8 kDa lyase domains present in pol beta, as well as an additional N-terminal BRCT domain and a serine-proline-rich linker that are presumably involved in protein-protein interactions. The 8 kDa domain of pol beta is important for DNA binding and contains the dRP lyase activity, which is the rate-limiting step in the single-nucleotide base excision repair (BER) pathway of damaged DNA. Recently, it was shown that the 8 kDa domain of pol lambda also contains the dRP lyase activity. To gain further insight into the catalytic mechanism of dRP removal by pol lambda, we have determined the solution structure of the 8 kDa lyase domain of human DNA pol lambda via multidimensional NMR methods and the ARIA program. The resulting structures exhibited a high degree of similarity with the 8 kDa lyase domain of pol beta. Specifically, the side chains of residues W274, R275, Y279, K307, R308, and K312 are in similar positions to the functionally important side chains of residues H34, K35, Y39, K60, K68, and K72 in the 8 kDa lyase domain of pol beta. This suggests that, on the basis of the proposed roles of these residues in pol beta, the corresponding pol lambda side chains may be involved in DNA binding and dRP lyase activity. The structural alignment of W274 (pol lambda) with H34 (pol beta) indicates that the former is probably involved in a similar base stacking interaction with template DNA at the position of the gap, in contrast with several previous proposals which aligned D272 with H34. In a few cases for which there is a nonconservative substitution in the sequence alignment, a structural comparison shows a positionally and, hence, probably a functionally equivalent residue, e.g., K60 in pol beta and K307 in pol lambda. Additionally, on the basis of the structural alignment obtained, several previously proposed mechanistic hypotheses can be evaluated.  相似文献   

3.
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends.  相似文献   

4.
The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphate lyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or an 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase within the non-homologous end joining pathway.  相似文献   

5.
A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA. This DNA ligand represents a potential BER intermediate. The crystal structure reveals that the dRP group is bound in a non-catalytic binding site. The catalytic nucleophile in the dRP lyase reaction, Lys72, and all other potential secondary nucleophiles, are too far away to participate in nucleophilic attack on the C1' of the sugar. An approximate model of the dRP group in the expected catalytic binding site suggests that a rotation of 120 degrees about the dRP 3'-phosphate is required to position the epsilon-amino Lys72 close to the dRP C1'. This model also suggests that several other side chains are in position to facilitate the beta-elimination reaction. From results of mutational analysis of key residues in the dRP lyase active site, it appears that the substrate dRP can be stabilized in the observed non-catalytic binding conformation, hindering dRP lyase activity.  相似文献   

6.
Three of the four family X polymerases, DNA polymerase lambda, DNA polymerase mu, and TdT, have been associated with repair of double-strand DNA breaks by nonhomologous end-joining. Their involvement in this DNA repair process requires an N-terminal BRCT domain that mediates interaction with other protein factors required for recognition and binding of broken DNA ends. Here we present the NMR solution structure of the BRCT domain of DNA polymerase lambda, completing the structural portrait for this family of enzymes. Analysis of the overall fold of the polymerase lambda BRCT domain reveals structural similarity to the BRCT domains of polymerase mu and TdT, yet highlights some key sequence and structural differences that may account for important differences in the biological activities of these enzymes and their roles in nonhomologous end-joining. Mutagenesis studies indicate that the conserved Arg57 residue of Pol lambda plays a more critical role for binding to the XRCC4-Ligase IV complex than its structural homolog in Pol mu, Arg43. In contrast, the hydrophobic Leu60 residue of Pol lambda contributes less significantly to binding than the structurally homologous Phe46 residue of Pol mu. A third leucine residue involved in the binding and activity of Pol mu, is nonconservatively replaced by a glutamine in Pol lambda (Gln64) and, based on binding and activity data, is apparently unimportant for Pol lambda interactions with the NHEJ complex. In conclusion, both the structure of the Pol lambda BRCT domain and its mode of interaction with the other components of the NHEJ complex significantly differ from the two previously studied homologs, Pol mu and TdT.  相似文献   

7.
Base excision repair is a major pathway for the removal of simple lesions in DNA including base damage and base loss (abasic site). Base excision repair requires the coordinated action of several repair and ancillary proteins, the impairment of which can lead to genetic instability. Using a protein-DNA cross-linking assay during repair in human whole cell extracts, we monitored proteins involved in the initial steps of repair of a substrate containing a site-specific abasic site to address the molecular events following incision of the abasic site by AP endonuclease. We find that after dissociation of AP endonuclease from the incised abasic site, both DNA polymerase beta (Pol beta) and the DNA ligase IIIalpha-XRCC1 heterodimer efficiently bind/cross-link to the substrate DNA. We also find that the cross-linking efficacy of the DNA ligase IIIalpha-XRCC1 heterodimer was decreased about 2-fold in the Pol beta-deficient cell extract but was rescued by addition of purified wild type but not a mutant Pol beta protein that does not interact with the DNA ligase IIIalpha-XRCC1 heterodimer. We further demonstrate that Pol beta and the DNA ligase IIIalpha-XRCC1 heterodimer are present at equimolar concentrations in whole cell extracts and that Pol beta has a 7-fold higher affinity to the incised abasic site containing substrate than DNA ligase IIIalpha. Using gel filtration of whole cell extracts prepared at physiological salt conditions (0.15 M NaCl), we find no evidence for a stable preexisting complex of DNA Pol beta with the DNA ligase IIIalpha-XRCC1 heterodimer. Taken together, these data suggest that following incision by AP endonuclease, DNA Pol beta recognizes and binds to the incised abasic site and promotes recruitment of the DNA ligase IIIalpha-XRCC1 heterodimer through its interaction with XRCC1.  相似文献   

8.
DNA polymerase lambda (Pol lambda) is a member of the Pol X family having properties in common with several other mammalian DNA polymerases. To obtain clues to possible functions in vivo, we have determined the fidelity of DNA synthesis by human Pol lambda. The results indicate that the average single-base deletion error rate of Pol lambda is higher than those of other mammalian polymerases. In fact, unlike other DNA polymerases, Pol lambda generates single-base deletions at average rates that substantially exceed base substitution rates. Moreover, the sequence specificity for single-base deletions made by Pol lambda is different from that of other DNA polymerases and reveals that Pol lambda readily uses template-primers with limited base pair homology at the primer terminus. This ability, together with an ability to fill short gaps in DNA at low dNTP concentrations, is consistent with a role for mammalian Pol lambda in non-homologous end-joining. This may include non-homologous end-joining of strand breaks resulting from DNA damage, because Pol lambda has intrinsic 5',2'-deoxyribose-5-phosphate lyase activity.  相似文献   

9.
The repair of oxidative base lesions in DNA is a coordinated chain of reactions that includes removal of the damaged base, incision of the phosphodiester backbone at the abasic sugar residue, incorporation of an undamaged nucleotide and sealing of the DNA strand break. Although removal of a damaged base in mammalian cells is initiated primarily by a damage-specific DNA glycosylase, several lyases and DNA polymerases may contribute to the later stages of repair. DNA polymerase beta (Pol beta) was implicated recently as the major polymerase involved in repair of oxidative base lesions; however, the identity of the lyase participating in the repair of oxidative lesions is unclear. We studied the mechanism by which mammalian cell extracts process DNA substrates containing a single 8-oxoguanine or 5,6-dihydrouracil at a defined position. We find that, when repair synthesis proceeds through a Pol beta-dependent single nucleotide replacement mechanism, the 5'-deoxyribosephosphate lyase activity of Pol beta is essential for repair of both lesions.  相似文献   

10.
A new gene (POLL) encoding a novel DNA polymerase (Pol lambda) has been identified at mouse chromosome 19. Murine Pol lambda, consisting of 573 amino acid residues, has a 32% identity to Pol beta, involved in nuclear DNA repair in eukaryotic cells. It is interesting that Pol lambda contains all the critical residues involved in DNA binding, nucleotide binding and selection, and catalysis of DNA polymerization, that are conserved in Pol beta and other DNA polymerases belonging to family X. Murine Pol lambda, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity when assessed by in situ gel analysis. Pol lambda also conserves the critical residues of Pol beta required for its intrinsic deoxyribose phosphate lyase (dRPase) activity. The first 230 amino acid residues of Pol lambda, that have no counterpart in Pol beta, contain a BRCT domain, present in a variety of cell-cycle check-point control proteins responsive to DNA damage and proteins involved in DNA repair. Northern blotting, in situ hybridization analysis and immunostaining showed high levels of Pol lambda specifically expressed in testis, being developmentally regulated and mainly associated to pachytene spermatocytes. These first evidences, although indirect, suggest a potential role of Pol lambda in DNA repair synthesis associated with meiosis.  相似文献   

11.
There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or “short-patch” (SP-BER), and “long-patch” BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polβ itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polβ-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polβ in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.  相似文献   

12.
13.
X Liu  R Roy 《Biochemistry》2001,40(45):13617-13622
The human endonuclease III (hNTH1) is an important DNA glycosylase with associated abasic lyase activity. We previously demonstrated that the K212Q mutant was totally inactive, while the K212R mutant had reduced DNA glycosylase/lyase activity and could form a covalent complex with the substrate DNA upon reduction. We further characterized the biochemical properties of this K212R mutant protein. NH2- (N-) terminal sequencing in combination with mass spectrometry of the peptide-DNA adduct suggested that "opportunistic" lysine(s) in the lysine-rich N-terminal tail formed a Schiff base which might result in beta-elimination. However, simultaneous substitution of Lys-75 with Gln and deletion of first 72 residues in the N-terminal tail could not cause further alteration in the glycosylase reaction or beta-elimination event. Nonetheless, the time kinetics of K212R and its subsequent mutants showed glycosylase activity without any detectable AP-lyase activity during the first 10 min of the reaction. These results suggest that a single point mutation at the active site (K212R) uncoupled the glycosylase activity from the lyase activity. We propose that the uncoupled reaction carried out by K212R is a result of direct attack either by the nonionized form of the guanidino group of arginine which forms an unstable Schiff base that hydrolyzes prior to the beta-elimination event or by hydroxide ion to cleave the glycosylic bond. In either case this reaction is followed by a secondary beta-elimination event performed by random lysine residues primarily from the N-terminal tail region.  相似文献   

14.
The Escherichia coli adenine DNA glycosylase, MutY, plays an important role in the maintenance of genomic stability by catalyzing the removal of adenine opposite 8-oxo-7,8-dihydroguanine or guanine in duplex DNA. Although the x-ray crystal structure of the catalytic domain of MutY revealed a mechanism for catalysis of the glycosyl bond, it appeared that several opportunistically positioned lysine side chains could participate in a secondary beta-elimination reaction. In this investigation, it is established via site-directed mutagenesis and the determination of a 1.35-A structure of MutY in complex with adenine that the abasic site (apurinic/apyrimidinic) lyase activity is alternatively regulated by two lysines, Lys142 and Lys20. Analyses of the crystallographic structure also suggest a role for Glu161 in the apurinic/apyrimidinic lyase chemistry. The beta-elimination reaction is structurally and chemically uncoupled from the initial glycosyl bond scission, indicating that this reaction occurs as a consequence of active site plasticity and slow dissociation of the product complex. MutY with either the K142A or K20A mutation still catalyzes beta and beta-delta elimination reactions, and both mutants can be trapped as covalent enzyme-DNA intermediates by chemical reduction. The trapping was observed to occur both pre- and post-phosphodiester bond scission, establishing that both of these intermediates have significant half-lives. Thus, the final spectrum of DNA products generated reflects the outcome of a delicate balance of closely related equilibrium constants.  相似文献   

15.
In mammalian cells the majority of altered bases in DNA are processed through a single-nucleotide patch base excision repair mechanism. Base excision repair is initiated by a DNA glycosylase that removes a damaged base and generates an abasic site (AP site). This AP site is further processed by an AP endonuclease activity that incises the phosphodiester bond adjacent to the AP site and generates a strand break containing 3'-OH and 5'-sugar phosphate ends. In mammalian cells, the 5'-sugar phosphate is removed by the AP lyase activity of DNA polymerase beta (Pol beta). The same enzyme also fills the gap, and the DNA ends are finally rejoined by DNA ligase. We measured repair of oligonucleotide substrates containing a single AP site in cell extracts prepared from normal and Pol beta-null mouse cells and show that the reduced repair in Pol beta-null extracts can be complemented by addition of purified Pol beta. Using this complementation assay, we demonstrate that mutated Pol beta without dRPase activity is able to stimulate long patch BER. Mutant Pol beta deficient in DNA synthesis, but with normal dRPase activity, does not stimulate repair in Pol beta-null cells. However, under conditions where we measure base excision repair accomplished exclusively through a single-nucleotide patch BER, neither dRPase nor DNA synthesis mutants of Pol beta alone, or the two together, were able to complement the repair defect. These data suggest that the dRPase and DNA synthesis activities of Pol beta are coupled and that both of these Pol beta functions are essential during short patch BER and cannot be efficiently substituted by other cellular enzymes.  相似文献   

16.
Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants’ mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5?Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.  相似文献   

17.
18.
Picher AJ  Blanco L 《DNA Repair》2007,6(12):1749-1756
Pol lambda is a DNA repair enzyme with a high affinity for dNTPs, an intrinsic dRP lyase activity, a BRCT domain involved in interactions with NHEJ factors, and also capable to interact with the PCNA processivity factor. Based on this potential, Pol lambda could play a role in BER, V(D)J recombination, NHEJ and TLS. Here we show that human Pol lambda uses a templating 7,8-dihydro-8-oxoguanine (8oxoG) base, a common mutagenic form of oxidative damage, as efficiently as an undamaged dG, but giving rise to the alternative insertion of either dAMP or dCMP. However, Pol lambda strongly discriminated against the extension of the mutagenic 8oxoG:dAMP pair. Conversely, Pol lambda readily extended the non-mutagenic 8oxoG:dCMP pair with an efficiency that was even higher than that displayed on undamaged dG:dCMP pair. A similar capacity for non-mutagenic extension was also shown to occur in the case of O6-methylguanine (m6G), a mutagenic and cytotoxic DNA adduct. A comparison of these novel properties of human Pol lambda with those of other DNA polymerases involved in TLS will be discussed. Interestingly, when double-strand breaks are associated to base damage, modifications as 8oxoG could be eventually part of the synapsis required to join ends, and therefore, the capacity of Pol lambda either to insert opposite 8oxoG or to extend correct base pairs containing such a damage could be beneficial for its role in NHEJ.  相似文献   

19.
Guan L  Bebenek K  Kunkel TA  Greenberg MM 《Biochemistry》2010,49(45):9904-9910
5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is an oxidized abasic lesion that is produced by a variety of DNA damaging agents, including several antitumor antibiotics. DOB efficiently and irreversibly inhibits DNA polymerase β, an essential base excision repair enzyme in mammalian cells. The generality of this mode of inhibition by DOB is supported by the inactivation of DNA polymerase λ, which may serve as a possible backup for DNA polymerase β during abasic site repair. Protein digests suggest that Lys72 and Lys84, which are present in the lyase active site of DNA polymerase β, are modified by DOB. Monoaldehyde analogues of DOB substantiate the importance of the 1,4-dicarbonyl component of DOB for efficient inactivation of Pol β and the contribution of a freely diffusible electrophile liberated from the inhibitor by the enzyme. Inhibition of DNA polymerase β's lyase function is accompanied by inactivation of its DNA polymerase activity as well, which prevents long patch base excision repair of DOB. Overall, DOB is highly refractory to short patch and long patch base excision repair. Its recalcitrance to succumb to repair suggests that DOB is a significant source of the cytotoxicity of DNA damaging agents that produce it.  相似文献   

20.
Oxidized abasic residues in DNA constitute a major class of radiation and oxidative damage. Free radical attack on the nucleotidyl C-1' carbon yields 2-deoxyribonolactone (dL) as a significant lesion. Although dL residues are efficiently incised by the main human abasic endonuclease enzyme Ape1, we show here that subsequent excision by human DNA polymerase beta is impaired at dL compared with unmodified abasic sites. This inhibition is accompanied by accumulation of a protein-DNA cross-link not observed in reactions of polymerase beta with unmodified abasic sites, although a similar form can be trapped by reduction with sodium borohydride. The formation of the stably cross-linked species with dL depends on the polymerase lysine 72 residue, which forms a Schiff base with the C-1 aldehyde during excision of an unmodified abasic site. In the case of a dL residue, attack on the lactone C-1 by lysine 72 proceeds more slowly and evidently produces an amide linkage, which resists further processing. Consequently dL residues may not be readily repaired by "short-patch" base excision repair but instead function as suicide substrates in the formation of protein-DNA cross-links that may require alternative modes of repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号