首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS.  相似文献   

3.
4.
5.
Life in space     
The physical conditions of Space are most inhospitable and the higher forms of life probably could exist extraterrestrially only on Venus, Jupiter, and Saturn in our Solar System, and the chances there are poor in light of present knowledge. Thus intelligent life probably exists only on the Earth.Although indigenous intelligent extraterrestrial life seems to be improbable it is by no means clear that man cannot learn to live reasonably comfortably on most of our planets and planetoids such as our moon, and it seems certain that he will be able to travel great distances in the solar system.Lower forms of life may well occur extraterrestrially.  相似文献   

6.
Cells in space     
How does one treat in a seriously injured astronaut in outer space or even another planet? To answer such a question, the US National Aeronautical Space Administration (NASA) has embarked on a program of growing tissues--and possibly whole organs--in space. NASA has developed a unique rotating bioreactor that allow cells to be grown in a microgravity environment that eliminates almost all shear forces placed upon a cell culture system while entering space. Back on earth, this novel bioreactor has led to exciting discoveries and applications by scientists trying to get cells to differentiate and form their natural three-dimensional tissue matrices--the holy grail of tissue engineers. NASA's bioreactor has allowed various labs to culture cells and even viruses previously impossible to grow using traditional methods. These successes are attributed to the bioreactor's ability to provide an unique environment that closely resembles tissue differentiation during embryogenesis, and thus allowing cellular expression of surface epitopes similar to that of intact tissues. It also appears that cells grown in a microgravity, low-shear environment allows for greater chemical signaling, probably as a result of more surface contact between cells. Realizing the bioreactor's commercial potential, Santa Monica, California-based VivoRx licensed exclusive rights from NASA for both therapeutic and diagnostic commercial applications. VivoRx has, in the past, successfully transplanted encapsulated islet cells from cadavers and porcine pancreas into insulin-dependent diabetics, perhaps a major breakthrough in the treatment of diabetes. However, pancreas from cadavers are in very short supply. The bioreactor may be the answer; VivoRx hopes the bioreactor will allow them to propagate enough human islet cells to use their cell-based approach to treat a large diabetic population. The company has already successfully grown islet cells generated from the bioreactors, and is beginning FDA-approved Phase I/II clinical trials.  相似文献   

7.
8.

Editorial

Microbiology in space  相似文献   

9.
Peter Nick 《Protoplasma》2013,250(6):1229-1230
  相似文献   

10.
Plants in space     
Virtually all scenarios for the long-term habitation of spacecraft and other extraterrestrial structures involve plants as important parts of the contained environment that would support humans. Recent experiments have identified several effects of spaceflight on plants that will need to be more fully understood before plant-based life support can become a reality. The International Space Station (ISS) is the focus for the newest phase of space-based research, which should solve some of the mysteries of how spaceflight affects plant growth. Research carried out on the ISS and in the proposed terrestrial facility for Advanced Life Support testing will bring the requirements for establishing extraterrestrial plant-based life support systems into clearer focus.  相似文献   

11.
12.
13.
Estimating sample averages and sample variability is important in analyzing neural spike trains data in computational neuroscience. Current approaches have focused on advancing the use of parametric or semiparametric probability models of the underlying stochastic process, where the probabilistic distribution is characterized at each time point with basic statistics such as mean and variance. To directly capture and analyze the average and variability in the observation space of the spike trains, we focus on a data-driven approach where statistics are defined and computed in a function space in which the spike trains are viewed as individual points. Based on the definition of a “Euclidean” metric, a recent paper introduced the notion of the mean of a set of spike trains and developed an efficient algorithm to compute it under some restrictive conditions. Here we extend this study by: (1) developing a novel algorithm for mean computation that is quite general, and (2) introducing a notion of covariance of a set of spike trains. Specifically, we estimate the covariance matrix using the geometry of the warping functions that map the mean spike train to each of the spike trains in the dataset. Results from simulations as well as a neural recording in primate motor cortex indicate that the proposed mean and covariance successfully capture the observed variability in spike trains. In addition, a “Gaussian-type” probability model (defined using the estimated mean and covariance) reasonably characterizes the distribution of the spike trains and achieves a desirable performance in the classification of the spike trains.  相似文献   

14.
Lipid trafficking is essential for biogenesis and maintenance of eukaryotic organelles. In this issue of The EMBO Journal, Saita et al ( 2018 ) revealed that proteolytic processing by the rhomboid protease PARL in the mitochondrial inner membrane facilitates partitioning of START domain‐containing protein STARD7 to the cytosol and mitochondrial intermembrane space. STARD7 in the mitochondrial intermembrane space functions as a lipid transfer protein to shuttle phosphatidylcholine from the outer membrane to the inner membrane.  相似文献   

15.
Carugo O 《Bioinformation》2010,4(8):347-351
Several non-redundant ensembles of protein three-dimensional structures were analyzed in order to estimate their natural clustering tendency by means of the Cox-Lewis coefficient. It was observed that, despite proteins tend to aggregate into different and well separated groups, some overlap between different clusters occurs. This suggests that classifications bases only on structural data cannot allow a systematic classification of proteins. Additional information are in particular needed in order to monitor completely the complex evolutionary relationships between proteins.  相似文献   

16.
Genome sequencing projects have been initiated for a wide range of eukaryotes. A few projects have reached completion, but most exist as draft assemblies. As one of the main reasons to sequence a genome is to obtain its catalog of genes, an important question is how complete or completable the catalog is in unfinished genomes. To answer this question, we have identified a set of core eukaryotic genes (CEGs), that are extremely highly conserved and which we believe are present in low copy numbers in higher eukaryotes. From an analysis of a phylogenetically diverse set of eukaryotic genome assemblies, we found that the proportion of CEGs mapped in draft genomes provides a useful metric for describing the gene space, and complements the commonly used N50 length and x-fold coverage values.  相似文献   

17.
18.
19.
20.
The establishment of a permanent human settlement in space is one of humanity’s ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn’s moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号