首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The two electrode voltage clamp technique was used to investigate the steady-state and presteady-state kinetic properties of the type II Na+/P i cotransporter NaPi-5, cloned from the kidney of winter flounder (Pseudopleuronectes americanus) and expressed in Xenopus laevis oocytes. Steady-state P i -induced currents had a voltage-independent apparent K m for P i of 0.03 mm and a Hill coefficient of 1.0 at neutral pH, when superfusing with 96 mm Na+. The apparent K m for Na+ at 1 mm P i was strongly voltage dependent (increasing from 32 mm at −70 mV to 77 mm at −30 mV) and the Hill coefficient was between 1 and 2, indicating cooperative binding of more than one Na+ ion. The maximum steady-state current was pH dependent, diminishing by 50% or more for a change from pH 7.8 to pH 6.3. Voltage jumps elicited presteady-state relaxations in the presence of 96 mm Na+ which were suppressed at saturating P i (1 mm). Relaxations were absent in non-injected oocytes. Charge was balanced for equal positive and negative steps, saturated at extremes of potential and reversed at the holding potential. Fitting the charge transfer to a Boltzmann relationship typically gave a midpoint voltage (V 0.5) close to zero and an apparent valency of approximately 0.6. The maximum steady-state transport rate correlated linearly with the maximum P i -suppressed charge movement, indicating that the relaxations were NaPi-5-specific. The apparent transporter turnover was estimated as 35 sec−1. The voltage dependence of the relaxations was P i -independent, whereas changes in Na+ shifted V 0.5 to −60 mV at 25 mm Na+. Protons suppressed relaxations but contributed to no detectable charge movement in zero external Na+. The voltage dependent presteady-state behavior of NaPi-5 could be described by a 3 state model in which the partial reactions involving reorientation of the unloaded carrier and binding of Na+ contribute to transmembrane charge movement. Received: 11 March 1997/Revised: 3 June 1997  相似文献   

2.
The relationships between phlorizin binding and Na+-glucose cotransport were addressed in rabbit renal brush-border membrane vesicles. At pH 6.0 and 8.6, high affinity phlorizin binding followed single exponential kinetics. With regard to phlorizin concentrations, the binding data conformed to simple Scatchard kinetics with lower apparent affinities of onset binding (K di = 12–30 μm) compared to steady-state binding (K de = 2–5 μm), and the first-order rate constants demonstrated a Michaelis-Menten type of dependence with K m values identical to K di . Phlorizin dissociation from its receptor sites also followed single exponential kinetics with time constants insensitive to saturating concentrations of unlabeled phlorizin or d-glucose, but directly proportional to Na+ concentrations. These results prove compatible with homogeneous binding to SGLT1 whereby fast Na+ and phlorizin addition on the protein is followed by a slow conformation change preceding further Na+ attachment, thus occluding part of the phlorizin-bound receptor complexes. This two-step mechanism of inhibitor binding invalidates the recruitment concept as a possible explanation of the fast-acting slow-binding paradigm of phlorizin, which can otherwise be resolved as follows: the rapid formation of an initial collision complex explains the fast-acting behavior of phlorizin with regard to its inhibition of glucose transport; however, because this complex also rapidly dissociates in a rapid filtration assay, the slow kinetics of phlorizin binding are only apparent and reflect its slow isomerization into more stable forms. Received: 22 June 2000/Revised: 1 November 2000  相似文献   

3.
The NHE-1 isoform of the Na+/H+ exchanger is excessively activated in cardiac cells during ischemia. Hence NHE-1 specific inhibitors are being developed since they could be of beneficial influence under conditions of cardiac ischemia and reperfusion. In this study, the Cytosensor™ microphysiometer was used to measure the potency of four new drug molecules, i.e., EMD 84021, EMD 94309, EMD 96785 and HOE 642 which are inhibitors of the isoform 1 of the Na+/H+ exchanger. The experiments were performed with Chinese hamster ovary cells (CHO K1) which are enriched in the NHE-1 isoform of the Na+/H+ antiporter. The Na+/H+ exchanger was stimulated with NaCl and the rate of extracellular acidification was quantified with the Cytosensor. The proton exchange rate was measured as a function of the NaCl concentration in the range of 10–138 mm NaCl stimulation. The proton exchange rate followed Michaelis-Menten kinetics with a K M = 30 ± 4 mm for Na+. Addition of either one of the four inhibitors decreased the acidification rate. The IC50 values of the four compounds could be determined as 23 ± 7 nm for EMD 84021, 5 ± 1 nm for EMD 94309, 9 ± 2 nm for EMD 96785 and 8 ± 2 nm for HOE 642 at 138 mm NaCl, in good agreement with more elaborate biological assays. The IC50 values increased with the NaCl concentration indicating competitive binding of the inhibitor. The microphysiometer approach is a fast and simple method to measure the activity of the Na+/H+ antiporter and allows a quantitative kinetic analysis of the proton excretion rate. Received: 3 September 1998/Revised: 20 November 1998  相似文献   

4.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

5.
We have characterized a Na+/H+ exchanger in the membrane of isolated zymogen granules (ZG) from rat exocrine pancreas and investigated its role in secretagogue-induced enzyme secretion. ZG Na+/H+ exchanger activity was estimated by measuring Na+ or Li+ influx and consequent osmotic swelling and lysis of ZG incubated in Na- or Li-acetate. Alternatively, intragranule pH was investigated by measuring absorbance changes in ZG which had been preloaded with the weak base acridine orange. Na+- or Li+-dependent ZG lysis was enhanced by increasing inward to outward directed H+ gradients. Na+-dependent ZG lysis was not prevented by an inside-positive K+ diffusion potential generated by valinomycin which argues against parallel operation of separate electrogenic Na+ and H+ permeabilities and for coupled Na+/H+ exchange through an electroneutral carrier. Na+- and Li+-dependent ZG lysis was inhibited by EIPA (EC50∼25 μm) and benzamil (EC50∼100 μm), but only weakly by amiloride. Similarly, absorbance changes due to release of acridine orange from acidic granules into the medium were obtained with Na+ and Li+ salts only, and were inhibited by EIPA, suggesting the presence of a Na+/H+ exchanger in the membrane. Na+ dependent lysis of ZG was inhibited by 0.5 mm MgATP and MgATP-γ-S by about 60% and 35%, respectively. Inhibition by MgATP was prevented by incubation of ZG with alkaline phosphatase (100 U/ml), or by the calmodulin antagonists calmidazolium (0.75 μm), trifluoperazine (100 μm) and W-7 (500 μm), suggesting that the ZG Na+/H+ exchanger is regulated by a ZG membrane-bound calmodulin-dependent protein kinase. Na+ dependence of secretagogue (CCK-OP)-stimulated amylase secretion was investigated in digitonin permeabilized rat pancreatic acini and was higher in acini incubated in Na+ containing buffer (30 mm NaCl/105 mm KCl buffer; 6.4 ± 0.4% of total amylase above basal) compared to buffer without Na+ (0 mm NaCl/135 mm KCl buffer; 4.7 ± 0.4% of total amylase above basal, P < 0.03). EIPA (50 μm) reduced CCK-OP-induced amylase secretion in Na+ containing buffer from 7.5 ± 0.6% to 4.1 ± 0.8% (P < 0.02). In the absence of Na+ in the buffer, CCK-OP-stimulated amylase release was not inhibited by 50 μm EIPA. The data suggest that an amiloride insensitive, EIPA inhibitable Na+/H+ exchanger is present in ZG membranes, which is stimulated by calmodulin antagonists and could be involved in secretagogue-induced enzyme secretion from rat pancreatic acini. Received: 7 December 1995/Revised: 2 April 1996  相似文献   

6.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

7.
The hypothesis that amiloride-sensitive Na+ channel complexes immunopurified from bovine renal papillary collecting tubules contain, as their core conduction component, an ENaC subunit, was tested by functional and immunological criteria. Disulfide bond reduction with dithiothreitol (DTT) of renal Na+ channels incorporated into planar lipid bilayers caused a reduction of single channel conductance from 40 pS to 13 pS, and uncoupled PKA regulation of this channel. The cation permeability sequence, as assessed from bi-ionic reversal potential measurements, and apparent amiloride equilibrium dissociation constant (K amil i ) of the Na+ channels were unaltered by DTT treatment. Like ENaC, the DTT treated renal channel became mechanosensitive, and displayed a substantial decrease in K amil i following stretch (0.44 ± 0.12 μm versus 6.9 ± 1.0 μm). Moreover, stretch activation induced a loss in the channel's ability to discriminate between monovalent cations, and even allowed Ca2+ to permeate. Polyclonal antibodies generated against a fusion protein of αbENaC recognized a 70 kDa polypeptide component of the renal Na+ channel complex. These data suggest that ENaC is present in the immunopurified renal Na+ channel protein complex, and that PKA sensitivity is conferred by other associated proteins. Received: 5 June 1995/Revised: 29 September 1995  相似文献   

8.
We here report on studies on the frog skin epithelium to identify the nature of its excretory H+ pump by comparing transport studies, using inhibitors highly specific for V-ATPases, with results from immunocytochemistry using V-ATPase-directed antibodies. Bafilomycin A1 (10 μm) blocked H+ excretion (69 ± 8% inhibition) and therefore Na+ absorption (61 ± 17% inhibition after 60 min application, n= 6) in open-circuited skins bathed on their apical side with a 1 mm Na2SO4 solution, ``low-Na+ conditions' under which H+ and Na+ fluxes are coupled 1:1. The electrogenic outward H+ current measured in absence of Na+ transport (in the presence of 50 μm amiloride) was also blocked by 10 μm bafilomycin A1 or 5 μm concanamycin A. In contrast, no effects were found on the large and dominant Na+ transport (short-circuit current), which develops with apical solutions containing 115 mm Na+ (``high-Na+ conditions'), demonstrating a specific action on H+ transport. In immunocytochemistry, V-ATPase-like immunoreactivity to the monoclonal antibody E11 directed to the 31-kDa subunit E of the bovine renal V-ATPase was localized only in mitochondria-rich cells (i) in their apical region which corresponds to apical plasma membrane infoldings, and (ii) intracellularly in their neck region and apically around the nucleus. In membrane extracts of the isolated frog skin epithelium, the selectivity of the antibody binding was tested with immunoblots. The antibody labeled exclusively a band of about 31 kDa, very likely the corresponding subunit E of the frog V-ATPase. Our investigations now deliver conclusive evidence that H+ excretion is mediated by a V-ATPase being the electrogenic H+ pump in frog skin. Received: 21 May 1996/Revised: 24 December 1996  相似文献   

9.
The relationships between currents generated by the rabbit Na+/glucose cotransporter (SGLT1) and the fluxes of Na+ and sugar were investigated using Xenopus laevis oocytes expressing SGLT1. In individual voltage-clamped oocytes we measured: (i) the current evoked by 10 mmαMG and the 22Na+ uptake at 10 mm Na+; (ii) the currents evoked by 50 to 500 μm [14C]αMG and the [14C]αMG uptakes at 100 mm Na+; and (iii) phlorizin-sensitive leak currents in the absence of sugar and 22Na+ uptakes at 10 mm Na+. We demonstrate that the SGLT1 leak currents are Na+ currents, and that the sugar-evoked currents are directly proportional to both αMG and Na+ uptakes. The Na+/αMG coupling coefficients were estimated to be 1.6 at −70 mV and 1.9 at −110 mV. This suggests that the rabbit SGLT1 Na+/αMG stoichiometry for sugar uptake is 2 under fully saturating, zero-trans conditions. Coupling coefficients of less than 2 are expected under nonsaturating conditions due to uncoupled Na+ fluxes (slippage). The similarity between the Na+ Hill coefficients and the coupling coefficients suggests strong cooperativity between the two Na+ binding sites. Received: 6 October 1997/Revised: 5 December 1997  相似文献   

10.
d-Aspartate (d-Asp) uptake by suspensions of cerebral rat brain astrocytes (RBA) maintained in long-term culture was studied as a means of characterizing function and regulation of Glutamate/Aspartate (Glu/Asp) transporter isoforms in the cells. d-Asp influx is Na+-dependent with K m = 5 μm and V max= 0.7 nmoles · min−1· mg protein−1. Influx is sigmoidal as f[Na+] with Na+ K m ∼ 12 μm and Hill coefficient of 1.9. The cells establish steady-state d-Asp gradients >3,000-fold. Phorbol ester (PMA) enhances uptake, and gradients near 6,000-fold are achieved due to a 2-fold increase in V max, with no change in K m . At initial [d-Asp] = 10 μm, RBA take up more than 90% of total d-Asp, and extracellular levels are reduced to levels below 1 μm. Ionophores that dissipate the ΔμNa+ inhibit gradient formation. Genistein (GEN, 100 μm), a PTK inhibitor, causes a 40% decrease in d-Asp. Inactive analogs of PMA (4α-PMA) and GEN (daidzein) have no detectable effect, although the stimulatory PMA response still occurs when GEN is present. Further specificity of action is indicated by the fact that PMA has no effect on Na+-coupled ALA uptake, but GEN is stimulatory. d-Asp uptake is strongly inhibited by serine-O-sulfate (S-O-S), threohydroxy-aspartate (THA), l-Asp, and l-Glu, but not by d-Glu, kainic acid (KA), or dihydrokainate (DHK), an inhibition pattern characteristic of GLAST and EAAC1 transporter isoforms. mRNA for both isoforms was detected by RT-PCR, and Western blotting with appropriate antibodies shows that both proteins are expressed in these cells. Received: 11 January 2001/Revised: 26 March 2001  相似文献   

11.
The nature of transepithelial and cellular transport of the dibasic amino acid lysine in human intestinal epithelial Caco-2 cells has been characterized. Intracellular accumulation of lysine across both the apical and basolateral membranes consists of a Na+-independent, membrane potential-sensitive uptake. Na+-independent lysine uptake at the basolateral membrane exceeds that at the apical membrane. Lysine uptake consists of both saturable and nonsaturable components. Na+-independent lysine uptake at both membranes is inhibited by lysine, arginine, alanine, histidine, methionine, leucine, cystine, cysteine and homoserine. In contrast, proline and taurine are without inhibitory effects at both membranes. Fractional Na+-independent lysine efflux from preloaded epithelial layers is greater at the basolateral membrane and shows trans-stimulation across both epithelial borders by lysine, arginine, alanine, histidine, methionine, and leucine but not proline and taurine. Na+-independent lysine influx (10 μm) in the presence of 10 mm homoserine shows further concentration dependent inhibition by lysine. Taken together, these data are consistent with lysine transport being mediated by systems bo,+, y+ and a component of very low affinity (nonsaturable) at both membranes. The relative contribution to lysine uptake at each membrane surface (at 10 μm lysine), normalized to total apical uptake (100%), is apical bo,+ (47%), y+ (27%) and the nonsaturable component (26%), and basal bo,+ (446%), y+ (276%) and the nonsaturable component (20%). Northern analysis shows hybridization of Caco-2 poly(A)+RNA with a human rBAT cDNA probe. Received: 3 July 1995/Revised: 6 February 1996  相似文献   

12.
Previous squid-axon studies identified a novel K/HCO3 cotransporter that is insensitive to disulfonic stilbene derivatives. This cotransporter presumably responds to intracellular alkali loads by moving K+ and HCO 3 out of the cell, tending to lower intracellular pH (pHi). With an inwardly directed K/HCO3 gradient, the cotransporter mediates a net uptake of alkali (i.e., K+ and HCO 3 influx). Here we test the hypothesis that intracellular quaternary ammonium ions (QA+) inhibit the inwardly directed cotransporter by interacting at the intracellular K+ site. We computed the equivalent HCO 3 influx (J HCO3) mediated by the cotransporter from the rate of pHi increase, as measured with pH-sensitive microelectrodes. We dialyzed axons to pHi 8.0, using a dialysis fluid (DF) free of K+, Na+ and Cl. Our standard artificial seawater (ASW) also lacked Na+, K+ and Cl. After halting dialysis, we introduced an ASW containing 437 mm K+ and 0.5% CO2/12 mm HCO 3, which (i) caused membrane potential to become transiently very positive, and (ii) caused a rapid pHi decrease, due to CO2 influx, followed by a slower plateau-phase pHi increase, due to inward cotransport of K+ and HCO 3. With no QA+ in the DF, J HCO3 was ∼58 pmole cm−2 sec−1. With 400 mm tetraethylammonium (TEA+) in the DF, J HCO3 was virtually zero. The apparent K i for intracellular TEA+ was ∼78 mm, more than two orders of magnitude greater than that obtained by others for inhibition of K+ channels. Introducing 100 mm inhibitor into the DF reduced J HCO3 to ∼20 pmole cm−2 sec−1 for tetramethylammonium (TMA+), ∼24 for TEA+, ∼10 for tetrapropylammonium (TPA+), and virtually zero for tetrabutylammonium (TBA+). The apparent K i value for TBA+ is ∼0.86 mm. The most potent inhibitor was phenyl-propyltetraethylammonium (PPTEA+), with an apparent K i of ∼91 μm. Thus, trans-side quaternary ammonium ions inhibit K/HCO3 influx in the potency sequence PPTEA+ > TBA+ > TPA+ > TEA+≅ TMA+. The identification of inhibitors of the K/HCO3 cotransporter, for which no inhibitors previously existed, will facilitate the study of this transporter. Received: 21 November 2000/Revised: 14 May 2001  相似文献   

13.
In the E1 state of the Na,K-ATPase all cations present in the cytoplasm compete for the ion binding sites. The mutual effects of mono-, di- and trivalent cations were investigated by experiments with the electrochromic fluorescent dye RH421. Three sites with significantly different properties could be identified. The most unspecific binding site is able to bind all cations, independent of their valence and size. The large organic cation Br2-Titu3+ is bound with the highest affinity (<μm), among the tested divalent cations Ca2+ binds the strongest, and Na+ binds with about the same equilibrium dissociation constant as Mg2+ (∼0.8 mm). For alkali ions it exhibits binding affinities following the order of Rb+≃ K+ > Na+ > Cs+ > Li+. The second type of binding site is specific for monovalent cations, its binding affinity is higher than that of the first type, for Na+ ions the equilibrium dissociation constant is < 0.01 mm. Since binding to that site is not electrogenic it has to be close to the cytoplasmic surface. The third site is specific for Na+, no other ions were found to bind, the binding is electrogenic and the equilibrium dissociation constant is 0.2 mm. Received: 7 August 2000/Revised: 14 November 2000  相似文献   

14.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

15.
Using cotransporters as drug delivery vehicles is a topic of continuing interest. We examined glucose derivatives containing conjugated aromatic rings using two isoforms of the Na+/glucose cotransporter: human SGLT1 (hSGLT1) and pig SGLT3 (pSGLT3, SAAT1). Our studies indicate that there is similarity between SGLT1 and SGLT3 in the overall architecture of the vestibule leading to the sugar-binding site but differences in translocation pathway interactions. Indican was transported by hSGLT1 with higher affinity (K0.5 0.06 mm) and 2-naphthylglucose with lower affinity (K0.5 0.5 mm) than α-methyl-d-glucopyranoside (αMDG, 0.2 mm). Both were poorly transported (maximal velocities, I max , 14% and 8% of αMDG). Other compounds were inhibitors (K i s 1–13 mm). In pSGLT3, indican and 2-naphthylglucose were transported with higher affinity than αMDG (K0.5s 0.9, 0.2 and 2.5 mm and relative I max s of 80, 25 and 100%). Phenylglucose and arbutin were transported with higher I max s (130 and 120%) and comparable K0.5s (8 and 1 mm). Increased affinity of indican relative to αMDG suggests that nitrogen in the pyrrole ring is favorable in both transporters. Higher affinity of 2-naphthylglucose for pSGLT3 than hSGLT1 suggests more extensive hydrophobic/aromatic interaction in pSGLT3 than in hSGLT1. Our results indicate that bulky hydrophobic glucosides can be transported by hSGLT1 and pSGLT3, and discrimination between them is based on steric factors and requirements for H-bonding. This provides information for design of glycosides with potential therapeutic value. Received: 18 February 2000/Revised: 13 April 2000  相似文献   

16.
The effect of extracellular cation concentration and membrane voltage on the current carried by outward-rectifying K+ channels was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with double-barrelled microelectrodes and the K+ current was monitored under voltage clamp in 0.1–30 mm K+ and in equivalent concentrations of Rb+, Cs+ and Na+. From a conditioning voltage of −200 mV, clamp steps to voltages between −150 and +50 mV in 0.1 mm K+ activated current through outward-rectifying K+ channels (I K, out) at the plasma membrane in a voltage-dependent fashion. Increasing [K+] o shifted the voltage-sensitivity of I K, out in parallel with the equilibrium potential for K+ across the membrane. A similar effect of [K+] o was evident in the kinetics of I K, out activation and deactivation, as well as the steady-state conductance- (g K ) voltage relations. Linear conductances, determined as a function of the conditioning voltage from instantaneous I-V curves, yielded voltages for half-maximal conductance near −130 mV in 0.1 mm K+, −80 mV in 1.0 mm K+, and −20 mV in 10 mm K+. Similar data were obtained with Rb+ and Cs+, but not with Na+, consistent with the relative efficacy of cation binding under equilibrium conditions (K+≥ Rb+ > Cs+ > > Na+). Changing Ca2+ or Mg2+ concentrations outside between 0.1 and 10 mm was without effect on the voltage-dependence of g K or on I K, out activation kinetics, although 10 mm [Ca2+] o accelerated current deactivation at voltages negative of −75 mV. At any one voltage, increasing [K+] o suppressed g K completely, an action that showed significant cooperativity with a Hill coefficient of 2. The apparent affinity for K+ was sensitive to voltage, varying from 0.5 to 20 mm with clamp voltages near −100 to 0 mV, respectively. These, and additional data indicate that extracellular K+ acts as a ligand and alters the voltage-dependence of I K, out gating; the results implicate K+-binding sites accessible from the external surface of the membrane, deep within the electrical field, but distinct from the channel pore; and they are consistent with a serial 4-state reaction-kinetic model for channel gating in which binding of two K+ ions outside affects the distribution between closed states of the channel. Received: 27 November 1996/Revised: 4 March 1997  相似文献   

17.
Outer sulcus epithelial cells were recently found to actively reabsorb cations from the cochlear luminal fluid, endolymph, via nonselective cation channels in the apical membrane. Here we determined the transport properties of the basolateral membrane with the whole-cell patch clamp technique; the apical membrane contributed insignificantly to the recordings. Outer sulcus epithelial cells exhibited both outward and inward currents and had a resting membrane potential of −90.4 ± 0.7 mV (n= 78), close to the Nernst potential for K+ (−95 mV). The reversal potential depolarized by 54 mV for a tenfold increase in extracellular K+ concentration with a K+/Na+ permeability ratio of 36. The most frequently observed K+ current was voltage independent over a broad range of membrane potentials. The current was reduced by extracellular barium (10−5 to 10−3 m), amiloride (0.5 mm), quinine (1 mm), lidocaine (5 mm) and ouabain (1 mm). On the other hand, TEA (20 mm), charybdotoxin (100 nm), apamin (100 nm), glibenclamide (10 μm), 4-aminopyridine (1 mm) and gadolinium (1 mm) had no significant effect. These data suggest that the large K+ conductance, in concert with the Na+,K+-ATPase, of the basolateral membrane of outer sulcus cells provides the driving force for cation entry across the apical membrane, thereby energizing vectorial cation absorption by this epithelium and contributing to the homeostasis of endolymph.  相似文献   

18.
Ion permeation properties of the mouse e21 NMDA receptor channel expressed in Xenopus oocytes were studied using the outside-out patch-clamp technique. In symmetrical Na+ solutions, the single-channel I-V relations were almost linear at low electrolyte concentrations, but rectified inwardly for Na+ concentrations above 50 mm. In symmetrical Na+ solutions, the ``zero-current conductance' increased with Na+ concentration and saturated according to a hyperbolic curve, the half-maximal saturating activity, K M (Na), being 14.2 mm and the maximal conductance, G max(Na), 53.9 pS. When Ca2+ was present with Na+ in the external solution, the single-channel current was lower than in pure Na+, although the reversal potential indicated a higher permeability for Ca2+ than for Na+. Using ion activities, PCa/PNa was found to be about 17. The I-V data were fitted with a model based on the Eyring's rate theory, assuming a one-ion pore with three energy barriers and two sites. The K M (Ca) and G max (Ca) were 76.5 μm and 21.2 pS, respectively. According to the estimated rate constants, K M for Ca2+ is mainly determined by the binding strength of a site located 80% away from the channel opening at the external membrane-solution interface, a position similar to that postulated previously for the Mg2+ blocking site. Received: 3 May 1996/Revised: 25 September 1996  相似文献   

19.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

20.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号