首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
INTRODUCTION: The effect of various dosages and dose strategies of oral coenzyme Q(10) (Q(100) administration on serum Q(10) concentration and bioequivalence of various formulations are not fully known. SUBJECTS AND METHODS: In a randomized, double blind, placebo controlled trial 60 healthy men, aged 18-55 years, were supplemented with various dosages and dose strategies of coenzyme Q(10) soft oil capsules (Myoqinon 100 mg, Pharma Nord, Denmark) or crystalline 100 mg Q(10) powder capsules or placebo. After 20 days blood levels were compared and oxidative load parameters, malondialdehyde (MDA) and thiobarbituric acid reactive substances (TBARS) were monitored to evaluate bioequivalence. All the subjects were advised to take the capsules with meals. Blood samples were collected after 12 hours of overnight fasting at baseline and after 20 days of Q(10) administration. Compliance was evaluated by counting the number of capsules returned by the subjects after the trial. RESULTS: Compliance by capsule counting was >90%. Side effects were negligible. Serum concentrations of Q(10) (average for groups) increased significantly 3-10 fold in the intervention groups compared with the placebo group. Serum response was improved with a divided dose strategy. TBARS and MDA were in the normal ranges at baseline. After 20 days intervention in the 200 mg group TBARS and MDA decreased, but the decrease was only significant for MDA (Fig. 2). Conclusions: All supplementations increased serum levels of Q(10). Q(10) dissolved in an oil matrix was more effective than the same amount of crystalline Q(10) in raising Q(10) serum levels. 200 mg of oil/soft gel formulation of Q(10) caused a larger increase in Q(10) serum levels than did 100 mg. Divided dosages (2 x 100 mg) of Q(10) caused a larger increase in serum levels of Q(10) than a single dose of 200 mg. Supplementation was associated with decreased oxidative stress as measured by MDA-levels. Indians appear to have low baseline serum coenzyme Q(10) levels which may be due to vegetarian diets. Further studies in larger number of subjects would be necessary to confirm our findings.  相似文献   

2.
3.
It has been claimed that coenzyme Q10 (Q10) would be an effective plasma antioxidant since it can regenerate plasma vitamin E. To test separate effects and interaction between Q10 and vitamin E in the change of plasma concentrations and in the antioxidative efficiency, we carried out a double-masked, double-blind clinical trial in 40 subjects with mild hypercholesterolemia undergoing statin treatment. Subjects were randomly allocated to parallel groups to receive either Q10 (200 mg daily), d-alpha-tocopherol (700 mg daily), both antioxidants or placebo for 3 months. In addition we investigated the pharmacokinetics of Q10 in a separate one-week substudy. In the group that received both antioxidants, the increase in plasma Q10 concentration was attenuated. Only vitamin E supplementation increased significantly the oxidation resistance of isolated LDL. Simultaneous Q10 supplementation did not increase this antioxidative effect of vitamin E. Q10 supplementation increased and vitamin E decreased significantly the proportion of ubiquinol of total Q10, an indication of plasma redox status in vivo. The supplementations used did not affect the redox status of plasma ascorbic acid. In conclusion, only vitamin E has antioxidative efficiency at high radical flux ex vivo. Attenuation of the proportion of plasma ubiquinol of total Q10 in the vitamin E group may represent in vivo evidence of the Q10-based regeneration of the tocopheryl radicals. In addition, Q10 might attenuate plasma lipid peroxidation in vivo, since there was an increased proportion of plasma ubiquinol of total Q10.  相似文献   

4.
Persons involved in the study, 21 per treatment arm, were consuming ubiquinone (Q10), 90 mg/day, 180 mg/day or placebo, for two weeks prior to hepatitis B vaccination. After 30 days this vaccination was repeated. Q10 was given as soft gelatin capsules containing 30 mg each. The consumption was continued throughout the study conducted for 90 days. Clinical observations and laboratory tests were performed throughout the study and no adverse effects were observed in any of the groups. Already after 30 days the two groups receiving Q10 showed a slightly titer of antibodies to hepatitis B surface antigen then the placebo group. This difference escalated and the immunopotentiating effect of Q10 was even more clear-cut in the residual part of the study. In addition, a dose response did also seem to be present when comparing the 90 mg group with the 180 mg group. Statistics revealed that Q10 in the dose 180 mg/day is able to increase antibody response in vivo in humans vaccinated against hepatitis B with up to 57% (p = 0.011).  相似文献   

5.
Many studies have suggested that parenteral administration of coenzyme Q10 (Q10) protects the myocardium of young experimental animals from post-ischemic reperfusion injury. Although parenteral administration, in contrast to per os supplementation, seems to elevate coenzyme Q concentrations in heart tissue, it is not suitable for prophylactic use. In addition, the incidence of ischemic events is greatest in older age. We studied the effect of Q10 supplementation on myocardial postischemic recovery in 18-month-old Wistar rats. The treated group (n=9) received 10 mg/kg/day of Q10 for 8 weeks in their chow while the normal chow of the control group (n=9) contained less than 0.5 mg/kg/day of Q10. The treatment clearly elevated plasma Q10 concentration (286 +/- 25 micromol/l and 48 +/- 30 micromol/l, treated and controls, respectively, p<0.0001) but neither Q9 nor Q10 concentrations in heart tissue were affected by the supplementation. The isolated perfused hearts were subjected to 20 minutes of ischemia and 30 minutes of reperfusion. The preischemic values of developed pressure (DP) but not contractility (+DP/delta t) and relaxation (-DP/delta t) were improved by Q10 supplementation (p=0.034, p=0.057 and p=0.13, respectively) while in postischemic recovery no differences were observed between the groups (p>0.05 at all time points). Also, in myocardial flow, myocardial oxygen consumption (MVO2) and myocardial aerobic efficiency (DP/MVO2) the groups did not differ at any time points. Although dietary Q10 supplementation clearly elevated plasma Q10 concentrations in senescent rats, the coenzyme Q contents in heart tissue and myocardial recovery from ischemia were not affected. However, it is possible that the site of action for the reported beneficial effects of Q10 is in the coronary endothelium rather than myocardium itself.  相似文献   

6.
T Koyama  W Keatisuwan  M Kinjo  H Saito 《Life sciences》1992,51(14):1113-1118
Phospholipase A2 (PLA2) activity is elevated in cardiac microsomal fractions and phospholipids (PL) are much reduced in both the cardiac mitochondria and microsomal fractions from rats subjected to prolonged swimming. Preadministration of coenzyme Q10 (CoQ10 i.v. 30 mg/kg) significantly suppressed these changes. Two groups of 8-week-old male Wistar rats were trained to swim, receiving 30 min of training for 4 days. On the fifth day they were given an intravenous injection of either 30 mg/kg CoQ10 in saline or 1 ml saline. Thirty minutes later they began to swim for 3 hours carrying a weight representing 3% of body weight. On completion of the swim they were sacrified by instantaneous decapitation, and cardiac mitochondria were isolated. Mitochondria were also prepared from saline injected, unexercised control rats. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) concentrations were measured with HPLC and PLA2 activity was assayed fluorometrically. The mitochondrial concentrations (means +/- SEM, n = 6) of PE and PC were respectively 126 +/- 22 and 140 +/- 22 nmol/mg protein in the exercise-CoQ10 group against 66 +/- 4 and 50 +/- 10 nmol/mg protein in the exercise-saline group. The specific PLA2 activities (expressed as nmol degraded dipyrene phosphorylethanolamine substrate/hr/mg protein) in the microsomes was 0.20 +/- 0.02 in the exercise-CoQ10 group against 0.30 +/- 0.02 in the exercise-saline group. These results suggest CoQ10 has a protective effect against an excessive reduction in mitochondrial membrane phospholipids during prolonged exercise.  相似文献   

7.
In this study, the effect of long-term supplementation of coenzyme Q10 (CoQ10) on the responses of swim-trained rat aorta was investigated. Twenty-four adult male Wistar rats were divided into four groups: untrained, trained, untrained+CoQ10, and trained+CoQ10 group. In the trained groups rats swam for 60 min/day, five days/week for six weeks. The CoQ10 supplements were administered by intraperitoneal injection at a daily dose of 10 mg·kg-1 of body weight five days/week for six weeks. Swimming of the rats was performed in a container containing tap water. Rats were sacrificed and thoracic aortas were removed for ex vivo analysis after the last swimming session. The aortas were cut into rings 2.5 mm in length. Concentration-response curves for phenylephrine (PHE, 10-9-3×10-4 M) and potassium chloride (KCl, 5-100 mM) were isometrically recorded. The sensitivity and maximal responses to PHE and KCl of aortic rings obtained from trained rats were lower than those of untrained rats. CoQ10 supplementation decreased the responses to both vasoconstrictors in untrained and especially in trained groups. Although neither CoQ10 nor training did affect malondialdehyde (MDA) and protein carbonyl (PC) levels, creatine kinase (CK) activity decreased and superoxide dismutase (SOD) activity increased only with exercise training. Glutathione (GSH) levels increased in CoQ10 supplemented-untrained rats. In conclusion, our results suggest that CoQ10 supplementation may have beneficial effects during exercise.  相似文献   

8.
BackgroundA low intake of selenium has been shown to increase the risk of cardiovascular mortality, and supplementation of selenium and coenzyme Q10 influences this. The mechanism behind is unclear although effects on inflammation, oxidative stress and microRNA expression have been reported.Fructosamine, a marker of long-term glycaemic control, is also a marker of increased risk of heart disease and death, even in non-diabetics.ObjectiveTo analyse the impact of selenium and coenzyme Q10 supplementation on the concentration of fructosamine. Also, the relation between pre-intervention serum selenium concentration and the effect on fructosamine of the intervention was studied.MethodsFructosamine plasma concentration was determined in 219 participants after six and 42 months of intervention with selenium yeast (200 μg/day) and coenzyme Q10 (200 mg/ day) (n = 118 of which 20 had diabetes at inclusion), or placebo (n = 101 of which 18 had diabetes at inclusion). Pre-intervention, the serum selenium levels were 67 μg/L (active treatment group: 66.6 μg/L; placebo group: 67.4 μg/L), corresponding to an estimated intake of 35 μg/day. Changes in concentrations of fructosamine following intervention were assessed by the use of T-tests, repeated measures of variance, and ANCOVA analyses.ResultsPost-intervention selenium concentrations were 210 μg/L in the active group and 72 μg/L in the placebo group. A lower concentration of fructosamine could be seen as a result of the intervention in the total population (P = 0.001) in both the males (P = 0.04) and in the females (P = 0.01) in the non-diabetic population (P = 0.002), and in both the younger (<76 years) (P = 0.01) and the older (≥76 years) participants (P = 0.03). No difference could be demonstrated in fructosamine concentration in the diabetic patients, but the total sample was small (n = 38). In subjects with a low pre-intervention level of serum selenium the intervention gave a more pronounced decrease in fructosamine compared with those with a higher baseline selenium level.ConclusionA significantly lower concentration of fructosamine was observed in the elderly community-living participants supplemented with selenium and coenzyme Q10 for 42 months compared to those on the placebo. As oxidative mechanisms are involved in the glycation of proteins, less glycoxidation could be a result of the supplementation of selenium and coenzyme Q10, which could have contributed to lower cardiac mortality and less inflammation, as has earlier been reported.This study was registered at Clinicaltrials.gov, and has the identifier NCT01443780.  相似文献   

9.
The aim of the study was to show whether the ACE inhibitor captopril is able to protect the heart against the deleterious effect of passive cigarette smoking on left ventricular mitochondria. Four groups of rabbits were investigated: control (C), passive smoking of three cigarettes twice daily/30 minutes (S), control + captopril (7.5 mg/kg body weight twice daily) (Cap), and smoking + captopril (SCap) as in group 2 and 3. Three weeks lasting passive smoking impaired oxidative phosphorylation, diminished cytochrome oxidase activity and increased the mitochondrial F1-ATPase protein concentration. Moreover, the level of coenzyme Q10 (CoQ10) and coenzyme Q9 were decreased. Simultaneous treatment with captopril prevented partly the decrease of CoQ10 level, deterioration of oxidative phosphorylation, diminution of cytochrome oxidase activity and enhancement of F1-ATPase level. We conclude that captopril protected the myocardium against the harmful effect of passive smoking in rabbits.  相似文献   

10.
Coenzyme Q10 is an important component of mitochondrial electron transport chain and antioxidant. Hyperthyroidism manifests hyperdynamic circulation with increased cardiac output, increased heart rate and decreased peripheral resistance. The heart is also under the oxidative stress in the hyperthyroidism. The aim of this study was to examine both how the coenzyme Q10 can affect heart ultrastructure in the hyperthyroidism and how the relationship between nitric oxide synthase (NOS) and heart damage and coenzyme Q10. Swiss Black C57 mice received 5 mg/kg L-thyroxine. Coenzyme Q10 (1.5 mg/kg) and L-thyroxine together was given to second group mice. Coenzyme Q10 and serum physiologic were applied to another two groups, respectively. All treatments were performed daily for 15 days by gavage. Free triiodothyronine and thyroxine were increased in two groups given L-thyroxine; thyroid-stimulating hormone level did not change. Hyperthyroid heart showed an increased endothelial NOS (eNOS) and inducible NOS (iNOS) immunoreactivity in the tissue. Coenzyme Q10 administration decreased these NOS immunoreactivities in the hyperthyroid animals. Cardiomyocytes of the hyperthyroid animals was characterized by abnormal shape and invaginated nuclei, and degenerative giant mitochondria. Desmosome plaques reduced in density. In hyperthyroid mice given coenzyme Q10, the structural disorganization and mitochondrial damage regressed. However, hearts of healthy mice given coenzyme Q10 displayed normal ultrastructure, except for increased mitochondria and some of them were partially damaged. Coenzyme Q10 increased the glycogen in the cardiomyocytes. In conclusion, coenzyme Q10 administration can prevent the ultrastructural disorganization and decrease the iNOS and eNOS increment in the hyperthyroid heart.  相似文献   

11.
A possible relationship between the pathogenesis of type 2 diabetes and coenzyme Q10 (CoQ10) deficiency has been proposed. The aim of this study was to assess the effect of CoQ10 on metabolic control in 23 type 2 diabetic patients in a randomized, placebo-controlled trial. Treatment with CoQ10 100 mg bid caused a more than 3-fold rise in serum CoQ10 concentration (p < 0.001). No correlation was observed between serum CoQ10 concentration and metabolic control. No significant changes in metabolic parameters were observed during CoQ10 supplementation. The treatment was well tolerated and did not interfere with glycemic control, therefore CoQ10 may be used as adjunctive therapy in patients with associated cardiovascular diseases.  相似文献   

12.
Coenzyme Q (CoQ) was previously demonstrated in vitro to indirectly act as an antioxidant in respiring mitochondria by regenerating alpha-tocopherol from its phenoxyl radical. The objective of this study was to determine whether CoQ has a similar sparing effect on alpha-tocopherol in vivo. Mice were administered CoQ10 (123 mg/kg/day) alone, or alpha-tocopherol (200 mg/kg/day) alone, or both, for 13 weeks, after which the amounts of CoQ10, CoQ9 and alpha-tocopherol were determined by HPLC in the serum as well as homogenates and mitochondria of liver, kidney, heart, upper hindlimb skeletal muscle and brain. Administration of CoQ10 and alpha-tocopherol, alone or together, increased the corresponding levels of CoQ10 and alpha-tocopherol in the serum. Supplementation with CoQ10 also elevated the amounts of the predominant homologue CoQ9 in the serum and the mitochondria. A notable effect of CoQ10 intake was the enhancement of alpha-tocopherol in mitochondria. alpha-Tocopherol administration resulted in an elevation of alpha-tocopherol content in the homogenates of nearly all tissues and their mitochondria. Results of this study thus indicate that relatively long-term administration of CoQ10 or alpha-tocopherol can result in an elevation of their concentrations in the tissues of the mouse. More importantly, CoQ10 intake has a sparing effect on alpha-tocopherol in mitochondria in vivo.  相似文献   

13.
To investigate the relationship between serum levels of Coenzyme Q10 and cardiac performance in thyroid disorders, we studied the cardiac performance and assessed serum levels of thyroid hormones and Coenzyme Q10 in 20 patients with hyperthyroidism, 5 patients with hypothyroidism and 10 normal subjects. A significant inverse correlation between thyroid hormones and Coenzyme Q10 levels was found by performing partial correlation analysis. Because low serum levels of Coenzyme Q10 were found in thyrotoxic patients and congestive heart failure may occur as a result of severe hyperthyroidism, 120 mg of Coenzyme Q10 was administered daily for one week to 12 hyperthyroid patients and the change in cardiac performance was assessed. Further augmentation of cardiac performance was found in hyperthyroid hearts, which were already augmented, after the administration of Coenzyme Q10. It appears, therefore, that the Coenzyme Q10 dose actually has a therapeutic value for congestive heart failure induced by severe thyrotoxicosis.  相似文献   

14.
Plasma coenzyme Q10 (CoQ10) response to oral ingestion of various CoQ10 formulations was examined. Both total plasma CoQ10 and net increase over baseline CoQ10 concentrations show a gradual increase with increasing doses of CoQ10. Plasma CoQ10 concentrations plateau at a dose of 2400 mg using one specific chewable tablet formulation. The efficiency of absorption decreases as the dose increases. About 95% of circulating CoQ10 occurs as ubiquinol, with no appreciable change in the ratio following CoQ10 ingestion. Higher plasma CoQ10 concentrations are necessary to facilitate uptake by peripheral tissues and also the brain. Solubilized formulations of CoQ10 (both ubiquinone and ubiquinol) have superior bioavailability as evidenced by their enhanced plasma CoQ10 responses.  相似文献   

15.
Coenzyme Q10 (CoQ10) concentration in blood cells was analyzed by HPLC and compared to plasma concentration before, during, and after CoQ10 (3 mg/kg/day) supplementation to human probands. Lymphocyte DNA 8-hydroxydeoxy-guanosine (8-OHdG), a marker of oxidative stress, was analyzed by Comet assay. Subjects supplemented with CoQ10 showed a distinct response in plasma concentrations after 14 and 28 days. Plasma levels returned to baseline values 12 weeks after treatment stopped. The plasma concentration increase did not affect erythrocyte levels. However, after CoQ10 supplementation, the platelet level increased; after supplementation stopped, the platelet level showed a delayed decrease. A positive correlation was shown between the plasma CoQ10 level and platelet and white blood cell CoQ10 levels. During CoQ10 supplementation, delayed formation of 8-OHdG in lymphocyte DNA was observed; this effect was long-lasting and could be observed even 12 weeks after supplementation stopped. Intracellular enrichment may support anti-oxidative defense mechanisms.  相似文献   

16.
Statin therapy can reduce the biosynthesis of both cholesterol and coenzyme Q10 by blocking the common upstream mevalonate pathway. Coenzyme Q10 depletion has been speculated to play a potential role in statin-related adverse events, and withdrawal of statin is the choice in patients developing myotoxicity or liver toxicity. However, the effect of statin withdrawal on circulating levels of coenzyme Q10 remains unknown. Twenty-six patients with hypercholesterolemia received atorvastatin at 10 mg/day for 3 months. Serum lipid profiles and coenzyme Q10 were assessed before and immediately after 3 months and were also measured 2 and 3 days after the last day on the statin. After 3 months' atorvastatin therapy, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and coenzyme Q10 (0.43 +/- 0.23 to 0.16 +/- 0.10 microg/mL) were all significantly reduced (all p<0.001). On day 2 after the last atorvastatin, the coenzyme Q10 level was significantly elevated (0.37 +/- 0.16 microg/mL) and maintained the same levels on day 3 (0.39 +/- 0.18 microg/mL) compared with those on month 3 (both p< 0.001), while TC and LDL-C did not significantly change within the same 3 days. These results suggest that statin inhibition of coenzyme Q10 synthesis is less strict than inhibition of cholesterol biosynthesis.  相似文献   

17.
Decylubiquinone treatment in vitro has demonstrated a potent inhibitor effect on reactive oxidative species production. However, the effectin vivo has not been demonstrated yet. Thus, rats SHRSP male were divided in two groups: treated and controls (n=6, each). The treated group received 10 mg/Kg(-)/body weight of decylubiquinone diluted in coconut oil by oral gavage during four weeks. Control rats just received the vehicle. Body weight, diuresis, food and water intake, systolic blood pressure, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, blood glucose levels and malondialdehyde were determined. There were a significant (p<0.05) reduction on systolic blood pressure, plasma malondialdehyde, total cholesterol and LDL-cholesterol in the treated group. Additionally, HDL-cholesterol also increased significantly. However, body weight, diuresis, food and water intake, blood glucose levels and triglycerides did not alter after treatment. Thus, decylubiquinone can be a new antihypertensive, hypolipidemic and antioxidant agent on the prevention and treatment of diseases linked to oxidative stress.  相似文献   

18.
The main purpose of this study was to determine whether intake of coenzyme Q10, which can potentially act as both an antioxidant and a prooxidant, has an impact on indicators of oxidative stress and the aging process. Mice were fed diets providing daily supplements of 0, 93, or 371 mg CoQ10 /kg body weight, starting at 3.5 months of age. Effects on mitochondrial superoxide generation, activities of oxidoreductases, protein oxidative damage, glutathione redox state, and life span of male mice were determined. Amounts of CoQ9 and CoQ10, measured after 3.5 or 17.5 months of intake, in homogenates and mitochondria of liver, heart, kidney, skeletal muscle, and brain increased with the dosage and duration of CoQ10 intake in all the tissues except brain. Activities of mitochondrial electron transport chain oxidoreductases, rates of mitochondrial O2-* generation, state 3 respiration, carbonyl content, glutathione redox state of tissues, and activities of superoxide dismutase, catalase, and glutathione peroxidase, determined at 19 or 25 months of age, were unaffected by CoQ10 administration. Life span studies, conducted on 50 mice in each group, showed that CoQ10 administration had no effect on mortality. Altogether, the results indicated that contrary to the historical view, supplemental intake of CoQ10 elevates the endogenous content of both CoQ9 and CoQ10, but has no discernable effect on the main antioxidant defenses or prooxidant generation in most tissues, and has no impact on the life span of mice.  相似文献   

19.
The purpose of this article is to summarise our studies, in which the main determinants and absorption of plasma coenzyme Q10 (Q10, ubiquinone) have been assessed, and the effects of moderate dose oral Q10 supplementation on plasma antioxidative capacity, lipoprotein oxidation resistance and on plasma lipid peroxidation investigated. All the supplementation trials carried out have been blinded and placebo-controlled clinical studies. Of the determinants of Q10, serum cholesterol, serum triglycerides, male gender, alcohol consumption and age were found to be associated positively with plasma Q10 concentration. A single dose of 30 mg of Q10, which is the maximum daily dose recommended by Q10 producers, had only a marginal elevating effect on plasma Q10 levels in non-Q10-deficient subjects. Following supplementation, a dose-dependent increase in plasma Q10 levels was observed up to a daily dose of 200 mg, which resulted in a 6.1-fold increase in plasma Q10 levels. However, simultaneous supplementation with vitamin E resulted in lower plasma Q10 levels. Of the lipid peroxidation measurements, Q10 supplementation did not increase LDL TRAP, plasma TRAP, VLDL+LDL oxidation resistance nor did it decrease LDL oxidation susceptibility ex vivo. Q10 with minor vitamin E dose neither decreased exercise-induced lipid peroxidation ex vivo nor muscular damage. Q10 supplementation might, however, decrease plasma lipid peroxidation in vivo , as assessed by the increased proportion of plasma ubiquinol (reduced form, Q10H 2 ) of total Q10. High dose vitamin E supplementation decreased this proportion, which suggests in vivo regeneration of tocopheryl radicals by ubiquinol.  相似文献   

20.
The purpose of this article is to summarise our studies, in which the main determinants and absorption of plasma coenzyme Q10 (Q10, ubiquinone) have been assessed, and the effects of moderate dose oral Q10 supplementation on plasma antioxidative capacity, lipoprotein oxidation resistance and on plasma lipid peroxidation investigated. All the supplementation trials carried out have been blinded and placebo-controlled clinical studies. Of the determinants of Q10, serum cholesterol, serum triglycerides, male gender, alcohol consumption and age were found to be associated positively with plasma Q10 concentration. A single dose of 30 mg of Q10, which is the maximum daily dose recommended by Q10 producers, had only a marginal elevating effect on plasma Q10 levels in non-Q10-deficient subjects. Following supplementation, a dose-dependent increase in plasma Q10 levels was observed up to a daily dose of 200 mg, which resulted in a 6.1-fold increase in plasma Q10 levels. However, simultaneous supplementation with vitamin E resulted in lower plasma Q10 levels. Of the lipid peroxidation measurements, Q10 supplementation did not increase LDL TRAP, plasma TRAP, VLDL+LDL oxidation resistance nor did it decrease LDL oxidation susceptibility ex vivo. Q10 with minor vitamin E dose neither decreased exercise-induced lipid peroxidation ex vivo nor muscular damage. Q10 supplementation might, however, decrease plasma lipid peroxidation in vivo, as assessed by the increased proportion of plasma ubiquinol (reduced form, Q10H 2 ) of total Q10. High dose vitamin E supplementation decreased this proportion, which suggests in vivo regeneration of tocopheryl radicals by ubiquinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号