首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The continuous fermentation of mannitol (pH 6, dilution rate (D)=0.087 h-1) by Clostridium butyricum LMG 1213t1 was investigated under several conditions. Mannitol was readily fermented when glucose or acetate were added in the in-flow medium as co-substrate. Butyrate, CO2 and H2 were the major fermentation products. In mannitol-glucose mixtures (ratios 4 or 8) the amount of mannitol fermented depended upon the amount of glucose in the in-flow medium. In mannitol-acetate mixtures, 1 mol of acetate was needed for the fermentation of approximately 5.5 mol mannitol. We detected d-mannitol-1-phosphate dehydrogenase activity, responsible for the generation of supplementary reduced nicotine adenine dinucleotide (NADH) as a source for extra H2 gas. Fermentation of mannitol-acetate in the presence of [14C]-labelled acetate revealed butyrate as the only labelled fermentation end-product.  相似文献   

2.
Studies on acetate utilization by Rhodopseudomonas capsulata strain St. Louis indicated that the wild type grew poorly on acetate and made little if any of the glyoxylate cycle enzyme isocitrate lyase. A spontaneous mutant, Ac-l, capable of vigorous and immediate growth on acetate and exhibiting high levels of isocitrate lyase activity, was isolated in the course of those studies.Isocitrate lyase was not formed when the mutant was grown on malate. Addition of malate to cultures of Ac-l growing on acetate resulted in loss of the enzyme by dilution through growth.Starvation of acetate-grown Ac-l for acetate resulted in a rapid and complete loss of isocitrate lyase activity which was shown to be energy dependent. Readdition of acetate to a starved culture previously grown on acetate resulted in a rapid recovery of enzyme activity. The recovery required energy and was sensitive to chloramphenicol inhibition at any time during the recovery phase.  相似文献   

3.
Fucus serratus L., Fucus spiralis L., and Fucus vesiculosus L. (Fucales, Phaeophyceae) as well as Laminaria digitata (Huds.) Lamour., Laminaria hyperborea (Gunn.) Fosl., and Laminaria saccharina (L.) Lamour. (Laminariales, Phaeophyceae) have been investigated for the distribution of enzymic CO2 fixation capacities via phosphoenolpyruvate carboxykinase (EC 4.1.1.32) (PEP-CK) and via ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) (RubP-C) in different regions of the thalli. The maximum of PEP-CK activity is found to be confined to the growing regions of the algae, while the activity of RubP-C achieves its highest values in the entirely differentiated parts of the fronds. These findings are confirmed by the results of photosynthetic and light-independent (dark) carbon assimilation as determined by in vivo 14CO2 fixation. The physiological significance of these differential patterns of carboxylation patterns is discussed with respect to the ontogenetic stage and the chemical constitution of the different thallus parts.  相似文献   

4.
Summary During anaerobic growth on methanol/CO2 the fermentative bacterium Eubacterium limosum B2 produced mixtures of acetic and butyric acids as overflow metabolites. The proportion of each product was shown to vary according to the initial acetate concentration. At low concentrations, acetate provoked a displacement of the organic acid ratio culminating in homobutyric fermentations at 100 mM initial acetate. This metabolic shift was accompanied by a proportionate increase in the methanol dissimilated to CO2, enabling a constant NAD(P)H2/NAD(P) metabolite pool to be maintained. Higher initial acetate concentrations could not be balanced by further changes to the substrate stoichiometry and resulted in less rapid growth. The yield of butyric acid was enhanced further by some consumption of acetate. A mathematical model is presented relating initial acetate concentration to butyric acid production.  相似文献   

5.
Summary Dormancy in the sporangiospores of Phycomyces blakesleeanus can be broken by a short pretreatment (10 min at 30° C) with NH4-acetate. The effect is partly reversible.Acetate activation is accompanied by a transient rise in trehalase activity, which causes a sharp decrease in the reserve substance trehalose followed by an accumulation of glucose in the surrounding medium. At the same time pyruvate, acetaldehyde, ethyl alcohol and lactate can be detected in the culture medium.CO2 production by respiration of externally supplied glucose is predominant in dormant and in germinating spores. During acetate treatment most of the CO2 produced, is supplied by the turnover of endogenous material.High activity of the pentose-phosphate (P-P) pathway occurs in dormant spores, as measured by the C6/C1 ratio. Adding acetate results in a sudden rise in the glycolytic Krebs cycle (EMP) pathway. Afterwards, the P-P pathway also increases and it predominates again during the initial phases of germination.  相似文献   

6.
The effects of mannitol were investigated by comparing some metabolic features in colonial derivatives, I-110 and L1-110, ofRhizobium japonicum strain 3IIb110, grown either on glucose alone (G-cells) or in glucose media supplemented with mannitol (GM-cells). The polyol stimulated the synthesis of not only mannitol dehydrogenase, which is active in derivative L1-110, but also the nicotinamide adenine dinucleotide (NAD)-linked 6-phosphogluconate (6-PG) dehydrogenase (EC 1.1.1.43). As revealed by radiorespirometry, when GM-cells were allowed to metabolize glucose, they produced relatively more CO2 from the first and sixth carbons of the sugar than G-cells did. This finding is evidence that NAD-linked 6-PG dehydrogenase might initiate an unknown pathway different from the hexose cycle and the pentose phosphate (PP) pathway. Mannitol exerted no allosteric control on the oxygen consumption and the glucose transport systems. Active uptake of the polyol was correlated with the presence of mannitol dehydrogenase (EC 1.1.1.67); it did not hinder the transport of glucose even though both systems derive their energy for active transport from a common source presumptively characterized as the energized membrane state. Mannitol, however, suppressed by two- or threefold the glucose uptake system. Addition of the polyol to the cell suspensions of both colonial types ofR. japonicum metabolizing glucose caused an immediate 40–50% drop of adenosine triphosphate (ATP) concentrations, owing in part to the mannitol kinase reaction. Type I-110 failed to overcome this reduction of ATP levels, and low growth rates could results. In contrast, type L1-110 offsets the reduction of ATP concentration by oxidizing mannitol as an additional source of energy through mannitol dehydrogenase, fructokinase, and a sequence of glycolytic reactions. The polyol also induced type L1-110 to produce extracellular slimy materials that, apparently, harbor amounts of ATP and proteins.  相似文献   

7.
The regulation of Crassulacean acid metabolism (CAM) in the fern Pyrrosia piloselloides (L.) Price was investigated in Singapore on two epiphytic populations acclimated to sun and shade conditions. The shade fronds were less succulent and had a higher chlorophyll content although the chlorophyll a:b ratio was lower and light compensation points and dark-respiration rates were reduced. Dawn-dusk variations in titratable acidity and carbohydrate pools were two to three times greater in fronds acclimated to high photosynthetically active radiation (PAR), although water deficits were also higher than in shade fronds. External and internal CO2 supply to attached fronds of the fern was varied so as to regulate the magnitude of CAM activity. A significant proportion of titratable acidity was derived from the refixation of respiratory CO2 (27% and 35% recycling for sun and shade populations, respectively), as measured directly under CO2-free conditions. Starch was shown to be the storage carbodydrate for CAM in Pyrrosia, with a stoichiometric reduction of C3-skeleton units in proportion to malic-acid accumulation. Measurements of photosynthetic O2 evolution under saturating CO2 were used to compare the light responses of sun and shade fronds for each CO2 supply regime, and also following the imposition of a photoinhibitory PAR treatment (1600 mol·m-2·s-1 for 3 h). Apparent quantum yield declined following the high-PAR treatment for sun- and shade-adapted plants, although for sun fronds CAM activity derived from respiratory CO2 prevented any further reduction in photosynthetic efficiency. Recycling of respiratory CO2 by shade plants could only partly prevent photoinhibitory damage. These observations provide experimental evidence that respiratory CO2 recycling, ubiquitous in CAM plants, may have developed so as to alleviate photoinhibition.Abbreviations and symbols CAM Crassulacean acid metabolism - FM maximal photosystem II fluorescence - FT terminal steady-state fluorescence - PAR photosynthetically active radiation, 400–700 nm - H+ (dawn-dusk) variation in titratable acidity  相似文献   

8.
Summary Tips of fronds of Fucus serratus L. were exposed to H14CO3 in the light for periods of 10, 30, 60, and 180s, fixed in petrol ether at-70° C, and subsequently lyophilized. Pheoplasts (=chloroplasts) were isolated using the nonaqueous technique of Thalacker et al. (1959). After extraction and chromatography percentage 14C activity and distribution of individual photoassimilates between pheoplasts and other compartments of assimilating cells were analyzed. Eighty percent of [14C]-phosphate esters were found within the pheoplasts after 10s 14C-assimilation, whereas only 25% were found there after 30s. After 10s [14C] mannitol is almost totally localized within the plastids, but after 180s the major part has been localized outside the pheoplasts. On the basis of these data the pheoplasts are regarded to be the only sites of primary mannitol biosynthesis during photosynthesis in Fucus.  相似文献   

9.
Acetogenic bacteria recently attracted attention because they reduce carbon dioxide (CO2) with hydrogen (H2) to acetate or to other products such as ethanol. Besides gases, acetogens use a broad range of substrates, but conversion of the sugar alcohol mannitol has rarely been reported. We found that the thermophilic acetogenic bacterium Thermoanaerobacter kivui grew on mannitol with a specific growth rate of 0.33 h−1 to a final optical density (OD600) of 2.2. Acetate was the major product formed. A lag phase was observed only in cultures pre-grown on glucose, not in those pre-grown on mannitol, indicating that mannitol metabolism is regulated. Mannitol-1-phosphate dehydrogenase (MtlD) activity was observed in cell-free extracts of cells grown on mannitol only. A gene cluster (TKV_c02830–TKV_c02860) for mannitol uptake and conversion was identified in the T. kivui genome, and its involvement was confirmed by deleting the mtlD gene (TKV_c02860) encoding the key enzyme MtlD. Finally, we overexpressed mtlD, and the recombinant MtlD carried out the reduction of fructose-6-phosphate with NADH, at a high VMAX of 1235 U mg−1 at 65°C. The enzyme was thermostable for 40 min at 75°C, thereby representing the first characterized MtlD from a thermophile.  相似文献   

10.
Relative growth rate, isocitrate lyase activity, chlorophyll, protein, lipid, and soluble carbohydrate contents were investigated in Chlamydomonas humicola Lucksch during auto-, mixo-, and heterotrnphic growth. Mixotrophic cells have a relative growth rate of 1.66 d –1as compared to 0.78 d –1 and 0.21 d –1 for hetero- and autotrophic cells, respectively. Addition of acetate to autotrophic cells resulted in an increase in cell dry weight during the first day, followed by a rapid decrease and stabilization at 40 pg·cell –1. Cellular yield of mixotrophu cells, on a dry weight basis, was 6.6 times that of heterotrophic cells and 21.9 limes that of autotrophic ones. After 4 d, mixotrophic cells were characterized by higher chlorophyll (3.6% dry weight [d.w.]) and protein (58.6% d.w.) contents and lower lipid (4.8% d.w.) and soluble carbohydrate (1.3% d.w.) contents than those of autotrophic (2.6% d.w. chlorophyll, 31.0% d.w. protein, 10.2% d.w. lipid, and 6.5% d.w. soluble carbohydrate) and heterotrophic (1.5% d.w. chlorophyll, 36.9% d.w. protein, 5.6% d.w. lipid, and 6.0% d.w. soluble carbohydrate) cells. The ratio of chlorophyll a/b was highest in heterotrophic cells due to lower chlorophyll b content. Isocitrate lyase activity, a key enzyme in ecetate assimitation, could not be detected in autotrophic cells. Addition of 10 mM acetate to the culture medium of hetero- and mixotrophic cells resulted in increased isocitrate lyase activity with a maximum after 24 h, followed by a decline in activity over a 7-d period. After 7 d of growth, only 0.01 mM acetate was found in the culture medium of mixotrophic cells as compared to 3.2 mM in the medium of heterotrophic ones, from an initial concentration of 10 mM.  相似文献   

11.
Summary Cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus were grown in thiosulfate-limited chemostats in a mineralsthiosulfate medium with and without organic supplements. Acetate, succinate and mixtures of amino acids increased the dry weight by 12–24% and the protein by 11–38%. Addition of both acetate and succinate had a cumulative effect. Saccharose, glucose, fructose, ribose, glycerol, glycerate, pyruvate, lactate or malate were without effect. The increase in dry weight of T. neapolitanus by 14C-acetate was directly related to the relative contribution of this compound to the total cell carbon.In CO2-limited cultures of T. neapolitanus the effects of acetate on dry weight and protein were similar to those found in thiosulfate-limited cultures. In CO2-limited cultures of T. pelophila a combination of acetate and succinate caused an increase in dry weight of 27% and of 50% in protein, the increase in protein being twice as high as in thiosulfate-limited cultures.There were no measurable differences in the activities of ribulosediphosphate carboxylase (RudPcase) in cell free extracts obtained from thiosulfate- or CO2-limited cultures of T. pelophila or T. neapolitanus grown in the presence or absence of organic compounds. In T. pelophila the RudPcase activity was almost constant at all growth rates tested, and independent of the type of growth-limitation. For T. neapolitanus the specific RudPcase activity varied slightly with the growth rate. In CO2-limited cultures the activity was three times that found in thiosulfate-limited cultures, thus showing that the RudPcase activity can be influenced by nutritional conditions.  相似文献   

12.
The effects of metronidazole, CO, methanogens, and CO2 on the fermentation of glucose by the anaerobic fungus Neocallimastix sp. strain L2 were investigated. Both metronidazole and CO caused a shift in the fermentation products from predominantly H2, acetate, and formate to lactate as the major product and caused a lower glucose consumption rate and cell protein yield. An increased lactate dehydrogenase activity and a decreased hydrogenase activity were observed in cells grown under both culture conditions. In metronidazole-grown cells, the amount of hydrogenase protein was decreased compared with the amount in cells grown in the absence of metronidazole. When Neocallimastix sp. strain L2 was cocultured with the methanogenic bacterium Methanobrevibacter smithii, the fermentation pattern changed in the opposite direction: H2 and acetate production increased at the expense of the electron sink products lactate, succinate, and ethanol. A concomitant decrease in the enzyme activities leading to these electron sink products was observed, as well as an increase in the glucose consumption rate and cell protein yield, compared with those of pure cultures of the fungus. Low levels of CO2 in the gas phase resulted in increased H2 and lactate formation and decreased production of formate, acetate, succinate, and ethanol, a decreased glucose consumption rate and cell protein yield, and a decrease in most of the hydrogenosomal enzyme activities. None of the tested culture conditions resulted in changed quantities of hydrogenosomal proteins. The results indicate that manipulation of the pattern of fermentation in Neocallimastix sp. strain L2 results in changes in enzyme activities but not in the proliferation or disappearance of hydrogenosomes.  相似文献   

13.
 Exogenous H2/CO2 and glucose were consumed simultaneously by Butyribacterium methylotrophicum when grown under glucose-limited conditions. CO2 reduction to acetate was coupled to H2 consumption. The addition of either H2 or CO2 to glucose batch fermentation resulted in an increase in cell density, hydrogenase (H2-consuming and -producing) activities and fatty acid production by B. methylotrophicum as compared to when N2 was the feed gas. Hydrogenase activities appeared to be tightly regulated and were produced at higher rates during the exponential phase when CO2 was the feed gas as compared to H2 or N2. The increase in H2-consuming activity and decrease in H2-producing activity was correlated with an increase in butyrate synthesis. H2-consuming and ferredoxin (Fd)–NAD reductase activities increased while H2-producing and NADH–Fd reductase activities decreased in cells grown at pH 5.5 compared to those at pH 7.0. The molar ratio of butyrate/acetate was shifted from 0.35 at pH 7.0 to 1.22 at pH 5.5. The addition of exogenous H2 did not decrease the butyrate/acetate ratio at pH 7.0 nor at pH 5.5. The results indicated that growth pH values regulated both hydrogenase and Fd–NAD oxidoreductase activities such that, at acid pH, more intermediary electron flow was directed towards butyrate synthesis than H2 production. Received: 22 August 1995/Received revision: 18 December 1995/Accepted: 22 January 1996  相似文献   

14.
Summary Oxygen is evolved from illuminated Chlorella fusca, in absence of CO2, on addition of glucose, fructose, mannose, and, to a small extent, galactose. The amount of oxygen, as measured by manometry, is equivalent to the amount of carbon from glucose incorporated into lipids, as determined radiochemically. This amount is much more than that incorporated in light in presence of CO2, or in the dark. The rate of evolution of oxygen with glucose is about twice that with acetate of similar molarity, after an initial burst of respiration in case of acetate.  相似文献   

15.
The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed‐eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown‐seaweed polysaccharides. Only nine isolates out of 65 utilized > 90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production.  相似文献   

16.
A high proportion of the kelp Laminaria hyperborea production is exported from kelp forests following seasonal storms or natural annual old blade loss. Transport of drifting kelp fragments can lead to temporary accumulations in benthic subtidal habitats. We investigated the degradation processes of L. hyperborea in a low subtidal sandy bottom ecosystem by setting up a 6-month cage experiment to simulate accumulations of kelp fragments on the seafloor. We monitored temporal changes in biomass, nutritional quality (C:N ratio), respiration, quantum efficiency of photosystem II (Fv/Fm), bacterial colonization, and chemical defense concentrations. Biomass decomposition started after 2 weeks and followed a classic negative exponential pattern, leading to 50% degradation after 8 weeks. The degradation process seemed to reach a critical step after 11 weeks, with an increase in respiration rate and phlorotannin concentration in the tissues. These results likely reflect an increase in bacterial activity and a weakening of the kelp cell wall. After 25 weeks of degradation, only 16% of the initial biomass persisted, but the remaining large fragments looked intact. Furthermore, photosystems were still responding to light stimuli, indicating that photosynthesis persisted over time. Reproductive tissues appeared on some fragments after 20 weeks of degradation, showing a capacity to maintain the reproductive function. Our results indicate that L. hyperborea fragments degrade slowly. As they maintain major physiological functions (photosynthesis, reproduction, etc.) and accumulate on adjacent ecosystems, they may play a long-term ecological role in coastal ecosystem dynamics.  相似文献   

17.
Acetone degradation by cell suspensions of Desulfobacterium cetonicum was CO2-dependent, indicating initiation by a carboxylation reaction. Degradation of butyrate was not CO2-dependent, and acetate accumulated at a ratio of 1 mol acetate per mol butyrate degraded. In cultures grown on acetone, no CoA transfer apparently occurred, and no acetate accumulated in the medium. No CoA-ligase activities were detected in cell-free crude extracts. This suggested that the carboxylation of acetone to acetoacetate, and its activation to acetoacetyl-CoA may occur without the formation of free acetoacetate. Acetoacetyl-CoA was thiolytically cleaved to two acetyl-CoA, which were oxidized to CO2 via the acetyl-CoA/carbon monoxide dehydrogenase pathway. The measured intracellular acyl-CoA ester concentrations allowed the calculation of the free energy changes involved in the conversion of acetone to acetyl-CoA. At in vivo concentrations of reactants and products, the initial steps (carboxylation and activation) must be energy-driven, either by direct coupling to ATP, or coupling to transmembrane gradients. The G of acetone conversion to two acetyl-CoA at the expense of the energetic equivalent of one ATP was calculated to lie very close to 0kJ (mol acetone)-1. Assimilatory metabolism was by an incomplete citric acid cycle, lacking an activity oxidatively decarboxylating 2-oxoglutarate. The low specific activities of this cycle suggested its probable function in anabolic metabolism. Succinate and glyoxylate were formed from isocitrate by isocitrate lyase. Glyoxylate thus formed was condensed with acetyl-CoA to form malate, functioning as an anaplerotic sequence. A glyoxylate cycle thus operates in this strictly anaerobic bacterium. Phosphoenolpyruvate (PEP) carboxykinase formed PEP from oxaloacetate. No pyruvate kinase activity was detected. PEP presumably served as a precursor for polyglucose formation and other biosyntheses.Abbreviations MV 2+ Oxidized methyl viologen - PEP Phosphoenolpyruvate - PHB Poly--hydroxybutyrate  相似文献   

18.
With glucose as a substrate, the oxygen consumption in yeast in inhibited by 2· 10-5M ethylene diisothiocyanate. The degree of inhibition was only to a small extent dependant on pH. Radiorespirometric experiments with uniformely labelled glucose showed that the CO2-production from glucose increased, probably due to increased glycolytic activity. Conversion of C-1 to CO2 was unaffected by the inhibitor, while the evolution of CO2 from C-6 was strongly inhibited. The same was the case with CO2 from C-1 in acetate. Respiration of ethanol was more strongly inhibited than that of glucose or acetate. Experiments with dual wavelength spectrophotometry showed the inhibition to be located on the Krebs cycle side of the respiratory flavoproteins. It is concluded that the action of ethylene diisothiocyanate on respiration must be located at the mitochondria.  相似文献   

19.
Respiration studies in vitro, in which tissue slices were incubated with [1-14C]glucose or [6-14C]glucose and 14CO2 collected, resulted in C-1/C-6 14CO2 ratios that were higher in slices of tumor and newborn brain than in slices of adult brain. In adult brain, the C-1/C-6 14CO2 ratio averaged close to unity. In slices of tumor and newborn brain however, the mean C-1/C-6 ratio was greater than three. Addition of phenazine methosulfate (PMS) increased conversion of [1-14C]glucose to 14CO2 in slices of normal adult brain 5-fold, and in slices of newborn brain and tumor, approx 12-fold. Injection of animals with 6-aminonicotinamide (6-AN) decreased conversion of [1-14C]glucose in slices of normal brain 30% but decreased conversion in tumor slices by 80%. Evidence supports the presence of an active hexose monophosphate pathway (HMP) in tumors of the nervous system regulated in part by available NADP+ levels. Inhibition by 6-AN was more effective in tumors than in normal adult brain.  相似文献   

20.
Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be beneficial to this organism as it relieves the requirement for acetate and CO2 during growth. Both on agar- and liquid-media, anaerobic growth of L. johnsonii NCC 533 requires CO2 supplementation of the gas phase. Switching off the CO2 supply induces growth arrest and cell death. The presence of molecular oxygen overcomes the CO2 dependency. Analogously, L. johnsonii NCC 533 strictly requires media with acetate to sustain anaerobic growth, although supplementation at a level that is 100-fold lower (120 microM) than the concentration in regular growth medium for lactobacilli already suffices for normal growth. Analogous to the CO2 requirement, oxygen supply relieves this acetate-dependency for growth. The L. johnsonii NCC 533 genome indicates that this organism lacks genes coding for pyruvate formate lyase (PFL) and pyruvate dehydrogenase (PDH), both CO2 and acetyl-CoA producing systems. Therefore, C1- and C2- compound production is predicted to largely depend on pyruvate oxidase activity (POX). This proposed role of POX in C2/C1-generation is corroborated by the observation that in a POX deficient mutant of L. johnsonii NCC 533, oxygen is not able to overcome acetate dependency nor does it relieve the CO2 dependency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号