首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Activation of nerve elements in vivo and in vitro is associated with an increased rate of choline uptake by a Na+-dependent high affinity transport system. Following the methodology of B arker (1976), rat cortical synaptosomes were depolarized (37°C, 10min) by 25mM-KCl in the presence of CaCl2 (1 mM) or other divalent cations. After reisolation by centrifugation, the rate of 3H-choline uptake (1.25μM) was measured by Millipore filtration. KCl treatment alone failed to accelerate the rate of uptake in the reisolated synaptosomes. CaCl2, BaC12 or SrCl2 (but not MgCl2 or MnCl2) were necessary (1 mM) to observe the KCl induced acceleration. Moreover, RbCl, but not LiCl or CsCl, also produced the calcium-dependent rate enhancement in the reisolated synaptosomes. The conditions mediating the enhanced rate of choline uptake correlated strongly with those associated with neurotransmitter release. To test this possibility, synaptosomal acetylcholine content was measured in response to the various salt treatments. Treatment with KCI (25 mM) and CaCl2 (1 mM), but not KCl alone, reduced the synaptosomal acetylcholine content from 154 to 113pmol/mg protein. The respective rates of choline uptake increased about 60%. The increased rate was reversed by incubation with 50 μM-choline followed by synaptosome reisolation. This procedure also normalized the acetylcholine content. In summary, the rate of choline uptake by the high affinity choline uptake system is inversely related to the synaptosomal acetylcholine content.  相似文献   

2.
Abstract— When suboesophageal ganglia of the snail Helix comalia were incubated at 25°C in a medium containing [3H]choline, tissue: medium ratios of about 14:1 were obtained after 20 min incubation, and only 15°, of the accumulated choline was metabolized to form [3H]acetylcholine. The uptake of [3H]choline showed saturation kinetics and was dependent upon temperature and sodium ions. Kinetic analysis suggested the existence of a high affinity uptake process (Km= 1.7 μM, Vmax= 0.21 nmol/g/min) and a low affinity process (Km= 100 μM, Vmax= 1.2 nmol/g/min). The high affinity uptake differed from the low affinity system in that it was sensitive to various metabolic inhibitors and was competitively inhibited by low concentrations of hemicholinium- and acetylcholine. Neither uptake system was greatly influenced by the absence of calcium, potassium or magnesium ions or by the presence of low concentrations of 5-HT, dopamine. tetrabenazine, chlorpromazine, decamethonium, nalaxone or imipramine. The high affinity uptake process may be important in supplying choline for the biosynthesis of acetylcholine in cholinergic neurons.  相似文献   

3.
G M Gilad  V H Gilad  J M Rabey 《Life sciences》1986,39(25):2387-2393
The effects of the dopaminergic agonist apomorphine or the antagonist sulpiride on high affinity choline uptake and newly synthesized acetylcholine release by hippocampal synaptosomal preparations, were examined in rats subjected to immobilization stress. Increased dopamine uptake by septal synaptosomal preparations was taken as evidence for increased mesoseptal dopaminergic activity in response to stress. While apomorphine treatment failed to alter choline uptake or acetylcholine release in unhandled rats, it did however prevent the stress-induced increase in these cholinergic parameters. In contrast, after treatment with sulpiride both choline uptake and acetylcholine release were increased in unhandled rats, as they were after acute stress. Acute stress of sulpiride treated rats however resulted in changes similar to those produced by administration of either sulpiride or stress separately. We conclude that the mesoseptal dopaminergic system plays an important role in modulating the activity of the septo-hippocampal cholinergic system under stress.  相似文献   

4.
S ummary . The residual microbial flora and the flora developing during storage at 1–3° and at 16°, of chicken carcasses cooked in a circulating moist air oven operated at 85°, have been studied. All parts of the carcasses reached and maintained 85° for at least 50 min, and the residual flora consisted largely of spore forming bacteria. The predominant residual species were Bacillus subtilis and Clostridium bifermentans. Non-sporing bacteria were not detected after cooking nor after storage at 1–3° for up to 7 days. Storage at 16° for 3 days markedly increased the number of non-sporing organisms although off-odours typical of spoilage were not apparent until at least 10 days. Staphylococcus aureus and Salmonella spp. were not detected after cooking and storage and Cl. welchii was rarely isolated. It is concluded that poultry cooked by this method present a minimal risk of food-borne infection or intoxication by these organisms if contamination after cooking is avoided, the carcasses are cooled rapidly to c , 3° and stored at this temperature or frozen.  相似文献   

5.
Abstract: Choline uptake in hippocampal synaptosomes was not inhibited by pentobarbital administration when rats were decapitated immediately upon loss of the righting reflex (3–4 min) even though it was inhibited at later times post-injection, when the rats were still unable to right themselves. Choline uptake was increased when the animals were decapitated at convulsion after an injection of picrotoxin, high doses of bicuculline, or one of the convulsant barbiturates. However, another convulsant barbiturate, as well as strychnine and lower doses of bicuculline, did not increase choline uptake even though the animals also convulsed. Thus loss of righting reflex or convulsion is not directly correlated with changes in choline uptake. At 7 min after injection, levels of pentobarbital in the hippocampus (and other brain regions) were correlated with the degree of inhibition of choline uptake up to about 50% inhibition; however, greater inhibition could not be achieved with much higher brain levels of the drug. Although hippocampal uptake was partially inhibited at 1 h after septal lesions, 3 h after the lesion the inhibition was no longer apparent. Inhibition was almost complete 10–12 days after the lesion. These results suggest that other factors in addition to impulse flow influence choline uptake.  相似文献   

6.
Abstract— —The uptake of taurine into tissue slices of specific regions of the rat central nervous system (CNS) was compared with the uptake of taurine into synaptosomal fractions prepared from the corresponding regions. Two different techniques for performing control experiments were also compared: procedure I, correction for the uptake of taurine obtained from duplicate incubations but at 2°c and procedure II, correction of taurine uptake into extracellular or extrasynaptosomal space measured by inulin uptake experiments plus correction for diffusion (non-saturable) processes.
Kinetic analyses of the uptake data in tissue slices utilizing the procedure I correction technique indicate that six regions of the rat CNS (spinal cord, diencephalon, cortex, striatum, hippocampus, and midbrain) possess high affinity uptake systems (Km values approx 60 μM or less). The Km value for the cerebellum (105.4 ± 15.7 μM) is intermediate between a high and low affinity uptake system while the Km value for the pons-medulla (210.0 12.4 μM) is considered to be low affinity. When procedure II techniques were utilized for correcting the uptake data all eight regions demonstrated high affinity uptake systems (11.8–73.2μM).
Synaptosomal fractions prepared from the spinal cord, pons-medulla, diencephalon, and midbrain demonstrate high affinity uptake systems (procedure I) for taurine (10.3–47.2 μM) while the hippocampus, cortex, striatum, and cerebellum have intermediate (but still high affinity) values (59.4–96.4 μM). High affinity uptake systems (8.2–79.8 μM) were obtained for all eight regions of the rat CNS when procedure II was utilized for correction of the data.  相似文献   

7.
The neurochemical activity of notexin and notechis II-5 was investigated using a synaptosomal preparation of rat cerebral cortices. In preparations preincubated with [3H]choline in order to label acetylcholine, the toxins caused a rapid release of the transmitter which was calcium-dependent. The toxins were also potent inhibitors of high affinity choline uptake. Both agents produced a marked depolarization of the synaptosomal preparation as measured by a fluorescent dye and at high concentrations lysed the preparation. At a concentration of 0.1 μM, notexin and notechis II-5 caused a 50% increase in the efflux of lactate dehydrogenase activity. These results, together with electron microscopic observations, indicated that the toxins disrupt the synaptosomal membranes presumably by their inherent phospholipase activity. The release of acetylcholine and inhibition of choline uptake, together with the depolarization of synaptosomal membranes noted in this study, could explain the observed electrophysiological effects of these toxins.  相似文献   

8.
Abstract— The uptake of [ N -Me-3H]choline into synaptosomes from squid optic lobes was studied using a Millipore filtration technique. When incubated in an artificial sea water medium at 26°C, but not at 0°C, the synaptosomes rapidly accumulated choline, most of which could be recovered as unchanged free choline. The accumulated choline was readily released by treatment of the synaptosomes with Triton X-100 or exposing them to hypo-osmotic conditions. The influx of choline increased with increasing concentrations of choline and could be resolved into saturable and non-saturable components. Kinetic analysis revealed the presence of two saturable components one of high affinity ( K m about 2 μ m ) and one of lower affinity ( K m 25 μ m ). The rate of choline uptake by these synaptosomes was considerably greater than by mammalian brain synaptosomes. Both high and low affinity systems were Na+-requiring and inhibited by hemicholinium no. 3, levorphanol and dextrorphan. NaCN, 2,4-dinitrophenol and ouabain also inhibited choline uptake, the high affinity system being particularly sensitive to these agents. It is suggested that the high affinity system is specific for cholinergic terminals.  相似文献   

9.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled L-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]L-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 degrees C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 degrees C. The values of Km were 90-489 microM in L-serine uptake. However, in the uptake of GABA the values of Km were 80-150 microM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

10.
Incubation of primary nerve cell cultures and of crude synaptosomal preparations with neuraminidase released sialic acid from both gangliosides and sialoglycoproteins. After this treatment, the pattern of ganglioside distribution was severely modified with a decrease of polysialogangliosides (GD1b, GT1b, GT1L, GQ1) and a dramatic increase in monosialoganglioside GM1. The choline influx into neuraminidase treated cells and organelles was reduced by 30–50% but the efflux was unmodified. In particular the high affinity mechanism of choline uptake disappeared and the low affinity mechanism was modified in both cases. The disappearance of the high affinity uptake mechanism was not followed by a decreased acetylcholine synthesis as it should be if the current theories on choline uptake and acetylcholine synthesis are correct. Our present data thus confirm our previous hypothesis that choline metabolism regulates choline uptake rather than the other way round as is suggested by the theories most widely accepted at present. Choline uptake was unaffected by pretreatment of cells and organelles with tetanus toxin suggesting that the effect of neuraminidase on the choline uptake were either mediated through glycoproteins or through gangliosides other than those which bind to tetanus toxin (GD1b and GT1b). Several speculative models for explaining the effect of neuraminidase on choline uptake are proposed.  相似文献   

11.
It has been shown in our laboratory that choline mustard aziridinium ion is a potent and irreversible inhibitor of choline transport into rat brain synaptosomes; this compound showed selectivity for the sodium-dependent, high affinity carrier in that it was 30 times more potent as an inhibitor when compared with the effect on sodium-independent, low affinity choline uptake. In the present study, this mustard analogue did not inhibit synaptosomal uptake of 5-hydroxytryptamine, noradrenaline, or gamma-aminobutyric acid, thereby confirming further the specificity of this compound for the choline carrier. Studies of the effect of depolarization of the nerve terminals on the inactivation of choline carriers by choline mustard were performed. It was determined that alkylation of the carrier was significantly increased in nerve endings previously depolarized. The enhancing effect of depolarization on choline transport velocity and on the alkylation of choline carriers by choline mustard was dependent upon the presence of sodium in the external medium. Possible mechanisms for the enhanced inactivation of choline carriers by choline mustard aziridinium ion are proposed, and kinetic interactions of choline mustard with the high affinity choline carrier and with choline acetyltransferase are reviewed and discussed.  相似文献   

12.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

13.
A Synaptosomal Preparation from the Guinea Pig Ileum Myenteric Plexus   总被引:6,自引:4,他引:2  
Abstract: Our interest in investigating the presynaptic modulation of acetylcholine release led to the development of a synaptosomal preparation from the guinea pig ileum myenteric plexus-longitudinal muscle. A crude synaptosomal fraction (P2) was obtained by homogenization and differential centrifugation. The preparation exhibited a specific uptake system for choline and for nor-adrenaline (NA), but not for 5-hydroxytryptamine (5-HT). Synaptosomes were isolated from this P2 fraction by an isoosmotic density gradient prepared from sucrose and metrizamide. The resultant synaptosomal fraction was enriched about sevenfold in both choline uptake and in choline acetyltransferase (ChAT). Choline was transported by a high-affinity system with a Km of 6.5 × 10−7 M and a Vmax of 41 pmol/mg protein/min. Electron microscopy confirmed the synaptosomal nature of the gradient fraction. Some synaptosomal profiles contained only small, translucent vesicles whereas others also contained large (approx. 100 nm diameter) electron-opaque vesicles. The crude synaptosomal fraction synthesized acetylcholine (ACh) from exogenous choline and it released the synthesized ACh in a calcium-dependent manner.  相似文献   

14.
The effects of cerebral ischemia, induced for 10 min by bilateral common carotid ligation in the Mongolian gerbil, on the brain and synaptosomal content of phospholipids and free fatty acids were measured. Moreover, the incorporation of arachidonic acid and oleoyl-CoA into phospholipids, as well as the respiration and the accumulation of45Ca, norepinephrine, dopamine, choline, glutamate, and -aminobutyrate in the ischemic brain synaptosomal fraction were studied. Analyses of lipids showed a drop in phospholipids content with concomitant increase of lysocompounds and free fatty acids in ischemic cerebral cortex. Disturbances in lipid metabolism including rapid phospholipids hydrolysis and changes in the incorporation of arachidonic acid into inositol and choline phosphoglycerides were also shown in the synaptosomal fraction of ischemic brain. The uptake of neurotransmitter substances, expressed as a percent of control value, was reduced 21% for norepinephrine, 40% for dopamine, 20% for choline, 24% for glutamate and 13% for -aminobutyrate in ischemic synaptosomes. There was no significant effect of ischemia on synaptosomal respiration and45Ca uptake in both control and high potassium media. the inhibition of neurotransmitter uptake in ischemic brain synaptosomes may be caused by the disturbance of fatty acid metabolism.  相似文献   

15.
Phase intensity changes of individual germinating spores of Bacillus subtilis were determined by phase-contrast light microscopy and image analysis. Two germination phases were investigated. The length of the time period before a change in phase brightness was evident and the duration of the phase intensity change until a constant greylevel was maintained. The incubation temperature (37 and 20 °C) and heat activation (10 min at 65 °C) had a distinct effect on both phases. At 37 °C, spores of B. subtilis 604 started to show a decrease in brightness in l -alanine buffer after 3–39 min and needed 10–39 min to complete the phase change. At 20 °C, lag times of 10–100 min were observed and the spores needed 30–100 min to reach a constant greylevel. Heat activation and subsequently exposure to l -alanine buffer at 20 °C reduced the lag phase to 6–90 min and the phase change was finished after 30–60 min. Our results indicate enzymatic involvement before and during the phase intensity change of germinating spores.  相似文献   

16.
Nerve terminals from the head ganglia of Locusta migratoria were isolated by means of a modified microscale flotation technique. Enzymatic, ultrastructural and chemical analysis revealed that the synaptosomal fraction was highly enriched in well-preserved nerve endings containing almost no free mitochondria. Cholinergic activities (choline acetyltransferase, acetylcholinesterase, acetylcholine receptors) were found to be concentrated in the synaptosomal fraction. The cholinergic nature and the functional integrity of nerve endings isolated from locusts were further supported by the existence of a high affinity choline uptake system, which is abolished by hemicholinium-3 as well as by low temperature, is essentially sodium dependent and inhibited by elevated potassium concentrations. After slight modifications of the gradient densities, synaptosomes could also be isolated from other insect species.  相似文献   

17.
The present study is concerned with the uptake and metabolism of choline by the rat brain. Intraperitoneal administration of choline chloride (4-60 mg/kg) caused a dose-dependent elevation of the plasma choline concentration from 11.8 to up to 165.2 microM within 10 min and the reversal of the negative arteriovenous difference (AVD) of choline across the brain to positive values at plasma choline levels of greater than 23 microM. Net choline release and uptake were linearly dependent on the plasma choline level in the physiological range of 10-50 microM, whereas the CSF choline level was significantly increased only at plasma choline levels of greater than 50 microM. The bolus injection of 60 mg/kg of [3H]choline chloride caused the net uptake of greater than 500 nmol/g of choline by the brain as calculated from the AVD, which was reflected in a minor increase of free choline level and a long-lasting increase of brain phosphorylcholine content, which paralleled the uptake curve. Loss of label from phosphorylcholine 30 min to 24 h after choline administration was accompanied by an increase of label in phosphatidylcholine, an indication of a delayed transfer of newly taken-up choline into membrane choline pools. In conclusion, homeostasis of brain choline is maintained by a complex system that interrelates choline net movements into and out of the brain and choline incorporation into and release from phospholipids.  相似文献   

18.
Acetylcholine Synthesis by Adult Bovine Adrenal Chromaffin Cell Cultures   总被引:1,自引:1,他引:0  
Adrenal chromaffin cells normally synthesize and release catecholamines. In the present study, [3H]acetylcholine synthesis and another characteristic of cholinergic neurons, [3H]choline uptake, were studied in cultures of adult bovine adrenal chromaffin cells. Chromaffin cell cultures took up [3H]choline from the medium and acetylated the [3H]choline to form [3H]acetylcholine. The rate of [3H]acetylcholine synthesis increased after 19 days in culture and continued to increase up to 28 days in culture. [3H]Acetylcholine synthesis could be increased by stimulating the cells with a depolarizing concentration of K+. The ability for K+ to stimulate synthesis of [3H]acetylcholine developed only after 28 days in culture. [3H]Choline was taken up by the cultures through a single mechanism with a high (to intermediate) affinity for choline. [3H]Choline uptake was enhanced by Na+ omission in day-14 cultures, but was at least partially Na+-dependent in day-29 cultures. Hemicholinium-3 (IC50 less than 10 muM) inhibited [3H]choline uptake into chromaffin cell cultures. It is concluded that bovine adrenal chromaffin cells, maintained in culture, are able to exhibit cholinergic properties and this capacity is retained even by the mature adult cell.  相似文献   

19.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

20.
Abstract: As a first step for experiments investigating the presynaptic characteristics of sympathetic fibers grown into the denervated hippocampus, we studied the time course of changes of neurochemical markers in the rat hippocampus, subsequent to aspiration lesions of the fimbria-fornix and the overlying callosal and cortical structures. At various postsurgical delays (1, 2, 8, 24, and 40 weeks), the activity of choline acetyltransferase, the high-affinity synaptosomal uptake of choline and noradrenaline, and the concentrations of noradrenaline, serotonin, and 5-hydroxyindoleacetic acid were measured in a dorsal, an intermediate, and a ventral part of the hippocampus. Levels of all markers were significantly reduced shortly (1–2 weeks) after the lesions. However, whereas the cholinergic (choline uptake and choline acetyltransferase activity) and the serotonergic (concentrations of serotonin and 5-hydroxyindoleacetic acid) markers remained significantly reduced for up to 40 weeks, both noradrenergic markers recovered to near-normal (noradrenaline uptake) or even supranormal (noradrenaline concentration) levels, although with clear-cut differences in the time course and the regional characteristics. The noradrenaline content reached control levels already 8 weeks after lesion surgery and was about two to three times higher 40 weeks later, with the most dramatic effects in the ventral hippocampus. In contrast, high-affinity noradrenaline uptake reached control values only 24 weeks after lesion and exceeded them only in the ventral hippocampus 40 weeks after surgery. It is concluded (a) that hippocampal noradrenaline concentration is a more sensitive marker for sympathetic sprouting than high-affinity noradrenaline uptake and (b) that functional in vitro studies on hippocampal sympathetic ingrowth appear to fit optimal conditions in the ventral hippocampus at a delay of at least 40 weeks after surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号