首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple dots moving independently back and forth on a flat screen induce a compelling illusion of a sphere rotating in depth (structure-from-motion). If all dots simultaneously reverse their direction of motion, two perceptual outcomes are possible: either the illusory rotation reverses as well (and the illusory depth of each dot is maintained), or the illusory rotation is maintained (but the illusory depth of each dot reverses). We investigated the role of attention in these ambiguous reversals. Greater availability of attention--as manipulated with a concurrent task or inferred from eye movement statistics--shifted the balance in favor of reversing illusory rotation (rather than depth). On the other hand, volitional control over illusory reversals was limited and did not depend on tracking individual dots during the direction reversal. Finally, display properties strongly influenced ambiguous reversals. Any asymmetries between 'front' and 'back' surfaces--created either on purpose by coloring or accidentally by random dot placement--also shifted the balance in favor of reversing illusory rotation (rather than depth). We conclude that the outcome of ambiguous reversals depends on attention, specifically on attention to the illusory sphere and its surface irregularities, but not on attentive tracking of individual surface dots.  相似文献   

2.
Certain visual stimuli can give rise to contradictory perceptions. In this paper we examine the temporal dynamics of perceptual reversals experienced with biological motion, comparing these dynamics to those observed with other ambiguous structure from motion (SFM) stimuli. In our first experiment, naïve observers monitored perceptual alternations with an ambiguous rotating walker, a figure that randomly alternates between walking in clockwise (CW) and counter-clockwise (CCW) directions. While the number of reported reversals varied between observers, the observed dynamics (distribution of dominance durations, CW/CCW proportions) were comparable to those experienced with an ambiguous kinetic depth cylinder. In a second experiment, we compared reversal profiles with rotating and standard point-light walkers (i.e. non-rotating). Over multiple test repetitions, three out of four observers experienced consistently shorter mean percept durations with the rotating walker, suggesting that the added rotational component may speed up reversal rates with biomotion. For both stimuli, the drift in alternation rate across trial and across repetition was minimal. In our final experiment, we investigated whether reversals with the rotating walker and a non-biological object with similar global dimensions (rotating cuboid) occur at random phases of the rotation cycle. We found evidence that some observers experience peaks in the distribution of response locations that are relatively stable across sessions. Using control data, we discuss the role of eye movements in the development of these reversal patterns, and the related role of exogenous stimulus characteristics. In summary, we have demonstrated that the temporal dynamics of reversal with biological motion are similar to other forms of ambiguous SFM. We conclude that perceptual switching with biological motion is a robust bistable phenomenon.  相似文献   

3.

Background

Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat.

Methodology/Principal Findings

Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds.

Conclusions/Significance

Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects.  相似文献   

4.
5.
Blake R  Sobel KV  Gilroy LA 《Neuron》2003,39(5):869-878
When the visual system is faced with conflicting or ambiguous stimulus information, visual perception fluctuates over time. We found that perceptual alternations are slowed when inducing stimuli move within the visual field, constantly engaging fresh, unadapted neural tissue. During binocular rivalry, dominance durations were longer when rival figures moved compared to when they were stationary, yielding lower alternation rates. Rate was not reduced, however, when observers tracked the moving targets, keeping the images on approximately the same retinal area. Alternations were reliably triggered when rival targets passed through a local region of the visual field preadapted to one of the rival targets. During viewing of a kinetic globe whose direction of rotation was ambiguous, observers experienced fewer alternations in perceived direction when the globe moved around the visual field or when the globe's axis of rotation changed continuously. Evidently, local neural adaptation is a key ingredient in the instability of perception.  相似文献   

6.
One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.  相似文献   

7.
The swimming behaviour of Halobacterium salinarium can be modulated by light. Changes of the light intensity that induce reversals of the swimming direction are called repellent stimuli, those that suppress reversals, which otherwise would occur spontaneously from time to time, are called attractant stimuli. Bacteria were stimulated by periodic pulse-like stimuli, and the frequency of induced reversals was recorded. Stimulation with a period length between 16 and 6.5 s let the cells reverse periodically with the frequency of the external force. After the stimulation had been stopped, the cells continued to reverse periodically for 3 to 9 periods which, however, switched to a value of about 6 to 8 s, independent of the frequency of preceding stimulation. This endogeneous oscillation was most distinct when the stimulation period either equalled the endogeneous period or was twice or half of its length. During the endogeneous oscillation, the responsiveness to an attractant stimulus showed a pronounced phase-dependence. These results point to the oscillation of a signal in the sensory pathway which, different from our former assumption, seems to be not self-sustained but has to be set going by external stimulation. Received: 14 January 1998 / Revised version: 9 April 1998 / Accepted: 17 May 1998  相似文献   

8.
Characteristics of mismatch negativity elicited by dichotic stimulation were examined using deviant stimuli simulating movement of fused auditory images towards the standard stimuli or in the reverse direction. The effect of stationary deviants localized at 90 degrees in respect to standards was also measured. The standard stimuli were localized near either of ears or along the head midline. The spatial locations were produced by introducing interaural time differences into the click trains. All deviant stimuli evoked the mismatch negativity. The deviants moving from standards seem to evoke the lowest mismatch negativity with the longest latency at all azimuthal locations of standard stimuli. Besides, the deviant shift from standards proved to be the only direction at which the characteristics of mismatch negativity depended upon the standard's azimuth. It is seems that the discrimination of interaural time delay is essentially dependent on the pattern of interaural delay changes at the moment when the deviant occurs.  相似文献   

9.
In a typical experiment on decision making, one out of two possible stimuli is displayed and observers decide which one was presented. Recently, Stanford and colleagues (2010) introduced a new variant of this classical one-stimulus presentation paradigm to investigate the speed of decision making. They found evidence for “perceptual decision making in less than 30 ms”. Here, we extended this one-stimulus compelled-response paradigm to a two-stimulus compelled-response paradigm in which a vernier was followed immediately by a second vernier with opposite offset direction. The two verniers and their offsets fuse. Only one vernier is perceived. When observers are asked to indicate the offset direction of the fused vernier, the offset of the second vernier dominates perception. Even for long vernier durations, the second vernier dominates decisions indicating that decision making can take substantial time. In accordance with previous studies, we suggest that our results are best explained with a two-stage model of decision making where a leaky evidence integration stage precedes a race-to-threshold process.  相似文献   

10.
Tactile rivalry demonstrated with an ambiguous apparent-motion quartet   总被引:1,自引:0,他引:1  
When observers view ambiguous visual stimuli, their perception will often alternate between the possible interpretations, a phenomenon termed perceptual rivalry [1]. To induce perceptual rivalry in the tactile domain, we developed a new tactile illusion, based on the visual apparent-motion quartet [2]. Pairs of 200 ms vibrotactile stimuli were applied to the finger pad at intervals separated by 300 ms. The location of each successive stimulus pair alternated between the opposing diagonal corners of the approximately 1 cm(2) stimulation array. This stimulation sequence led all participants to report switches between the perception of motion traveling either up and down or left and right across their fingertip. Adaptation to tactile stimulation biased toward one direction caused subsequent ambiguous stimulation to be experienced in the opposing direction. In contrast, when consecutive trials of ambiguous stimulation were presented, motion was generally perceived in the direction consistent with the motion reported in the previous trial. Voluntary eye movements induced shifts in the tactile perception toward a motion axis aligned along a world-centered coordinate frame. Because the tactile quartet results in switching perceptual states despite unvaried sensory input, it is ideally suited to future studies of the neural processes associated with conscious tactile perception.  相似文献   

11.
We report on the ability of human observers in judging their direction of translation from sparse, moving random dot patterns for varying extents of 3-D rotation. The observers have to discriminate possible axes of translation with angular separations of 2.5 deg or 5 deg. The field of view is either 20x20 deg or 10x10 deg. The simulated observer movement is relative to two types of scenes. The first type consists of dots located on a single plane at a depth Z. The second type of scenes consists of dots located on two transparent planes at different depths Z and Z+dZ.Unlike in the single plane condition, where the judgements about the direction of translation deteriorate quickly as the magnitude of 3-D rotation increases, we find for movements relative to planes at different distances a stable performance over a range of rotational magnitudes. Moreover we find that a reduction of the field of view from 20x20 deg to 10x10 deg does not affect the judgements significantly.  相似文献   

12.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

13.
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.  相似文献   

14.
The way we perceive the visual world depends crucially on the state of the observer. In the present study we show that what we are holding in working memory (WM) can bias the way we perceive ambiguous structure from motion stimuli. Holding in memory the percept of an unambiguously rotating sphere influenced the perceived direction of motion of an ambiguously rotating sphere presented shortly thereafter. In particular, we found a systematic difference between congruent dominance periods where the perceived direction of the ambiguous stimulus corresponded to the direction of the unambiguous one and incongruent dominance periods. Congruent dominance periods were more frequent when participants memorized the speed of the unambiguous sphere for delayed discrimination than when they performed an immediate judgment on a change in its speed. The analysis of dominance time-course showed that a sustained tendency to perceive the same direction of motion as the prior stimulus emerged only in the WM condition, whereas in the attention condition perceptual dominance dropped to chance levels at the end of the trial. The results are explained in terms of a direct involvement of early visual areas in the active representation of visual motion in WM.  相似文献   

15.
Responses of the tibial campaniform sensilla, receptors that encode strains in the exoskeleton, were characterized by recording sensory activities during perturbations in freely standing cockroaches. The substrate upon which the animal stood was displaced horizontally using ramp and hold stimuli at varied rates. The sensilla showed short latency responses that were initiated in the first 30 ms of platform movement. Responses of individual receptors depended upon the direction of displacement and the orientation of their cuticular cap. Proximal receptors, whose caps are perpendicular to the long axis of the tibia, responded to displacements directed from the contralateral side of the body and from the head toward the abdomen. The distal sensilla, oriented parallel to the tibia, discharged at longer latency to displacements in opposite directions. Plots of receptor activity versus displacement direction showed that proximal and distal sensilla are activated in non-overlapping ranges of movement direction. Afferent responses also increased as the platform was displaced more rapidly. These results are consistent with a model in which displacements produce forces that result in bending of the tibia. This information could be utilized to detect the direction and rate of forces that occur during leg slipping or in walking on unstable terrains.  相似文献   

16.
Pica P  Jackson S  Blake R  Troje NF 《PloS one》2011,6(12):e28391
Cross cultural studies have played a pivotal role in elucidating the extent to which behavioral and mental characteristics depend on specific environmental influences. Surprisingly, little field research has been carried out on a fundamentally important perceptual ability, namely the perception of biological motion. In this report, we present details of studies carried out with the help of volunteers from the Mundurucu indigene, a group of people native to Amazonian territories in Brazil. We employed standard biological motion perception tasks inspired by over 30 years of laboratory research, in which observers attempt to decipher the walking direction of point-light (PL) humans and animals. Do our effortless skills at perceiving biological activity from PL animations, as revealed in laboratory settings, generalize to people who have never before seen representational depictions of human and animal activity? The results of our studies provide a clear answer to this important, previously unanswered question. Mundurucu observers readily perceived the coherent, global shape depicted in PL walkers, and experienced the classic inversion effects that are typically found when such stimuli are turned upside down. In addition, their performance was in accord with important recent findings in the literature, in the abundant ease with which they extracted direction information from local motion invariants alone. We conclude that the effortless, veridical perception of PL biological motion is a spontaneous and universal perceptual ability, occurring both inside and outside traditional laboratory environments.  相似文献   

17.
18.
In recent years, there has been much interest in characterizing statistical properties of natural stimuli in order to better understand the design of perceptual systems. A fruitful approach has been to compare the processing of natural stimuli in real perceptual systems with that of ideal observers derived within the framework of Bayesian statistical decision theory. While this form of optimization theory has provided a deeper understanding of the information contained in natural stimuli as well as of the computational principles employed in perceptual systems, it does not directly consider the process of natural selection, which is ultimately responsible for design. Here we propose a formal framework for analysing how the statistics of natural stimuli and the process of natural selection interact to determine the design of perceptual systems. The framework consists of two complementary components. The first is a maximum fitness ideal observer, a standard Bayesian ideal observer with a utility function appropriate for natural selection. The second component is a formal version of natural selection based upon Bayesian statistical decision theory. Maximum fitness ideal observers and Bayesian natural selection are demonstrated in several examples. We suggest that the Bayesian approach is appropriate not only for the study of perceptual systems but also for the study of many other systems in biology.  相似文献   

19.
V(1)-ATPase, the hydrophilic V-ATPase domain, is a rotary motor fueled by ATP hydrolysis. Here, we found that Thermus thermophilus V(1)-ATPase shows two types of inhibitory pauses interrupting continuous rotation: a short pause (SP, 4.2 s) that occurred frequently during rotation, and a long inhibitory pause (LP, >30 min) that terminated all active rotations. Both pauses occurred at the same angle for ATP binding and hydrolysis. Kinetic analysis revealed that the time constants of inactivation into and activation from the SP were too short to represent biochemically predicted ADP inhibition, suggesting that SP is a newly identified inhibitory state of V(1)-ATPase. The time constant of inactivation into LP was 17 min, consistent with one of the two time constants governing the inactivation process observed in bulk ATPase assay. When forcibly rotated in the forward direction, V(1) in LP resumed active rotation. Solution ADP suppressed the probability of mechanical activation, suggesting that mechanical rotation enhanced inhibitory ADP release. These features were highly consistent with mechanical activation of ADP-inhibited F(1), suggesting that LP represents the ADP-inhibited state of V(1)-ATPase. Mechanical activation largely depended on the direction and angular displacement of forced rotation, implying that V(1)-ATPase rotation modulates the off rate of ADP.  相似文献   

20.
Western scrub-jays (Aphelocoma californica) hide food and rely on spatial memory to recover their caches at a later date. They also rely on observational spatial memory to steal caches made by other individuals. Successful pilfering may require an understanding of allocentric space because the observer will often be in a different position from the demonstrator when the caching event occurs. We compared cache recovery accuracy of pairs of observers that watched a demonstrator cache food. The pattern of recovery searches showed that observers were more accurate when they had observed the caching event from the same viewing direction as the demonstrator than when they had watched from the opposite direction. Search accuracy was not affected by whether or not the tray-specific local cues provided left–right landmark information (i.e. heterogeneous vs. homogeneous local cues), or whether or not the caching tray location was rotated. Taken together, these results suggest that observers have excellent spatial memory and that they have little difficulty with mental rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号