首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugative plasmids are extra-chromosomal DNA elements that are capable of horizontal transmission and are found in many natural isolated bacteria. Although plasmids may carry beneficial genes to their bacterial host, they may also cause a fitness cost. In this work, we studied the evolution of the R1 plasmid and we found that, in spite of the R1 plasmid conferring an initial cost to its host, after 420 generations the cost disappeared in all five independent evolution experiments. In fact, in two of these five experiments evolved conjugative plasmids actually conferred a fitness advantage to their hosts. Furthermore, the relative fitness of the ancestral clone bearing one of the evolved plasmids is significantly higher than both the plasmid-free ancestral cells and the evolved cells carrying the evolved plasmid. Given that the R1 plasmid may spread among different species of enterobacteria, we wondered what the effect of the evolved plasmid would be inside Salmonella enterica cells. We found that the evolved plasmid is also able to dramatically increase the relative fitness of these cells. Our results suggest that even if general usage of antibiotics is halted, conjugative plasmids that have been selected with antibiotics in previous years can still persist among bacterial populations or even invade new strains.  相似文献   

2.
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.  相似文献   

3.
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad‐host‐range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.  相似文献   

4.
Multidrug resistance blaCMY-2 plasmids that confer resistance to expanded-spectrum cephalosporins have been found in multiple bacterial species collected from different hosts worldwide. The widespread distribution of blaCMY-2 plasmids may be driven by antibiotic use that selects for the dissemination and persistence of these plasmids. Alternatively, these plasmids may persist and spread in bacterial populations in the absence of selection pressure if a balance exists among conjugative transfer, segregation loss during cell division, and fitness cost to the host. We conducted a series of experiments (both in vivo and in vitro) to study these mechanisms for three blaCMY-2 plasmids, peH4H, pAR060302, and pAM04528. Results of filter mating experiments showed that the conjugation efficiency of blaCMY-2 plasmids is variable, from <10(-7) for pAM04528 and peH4H to ~10(-3) for pAR060302. Neither peH4H nor pAM04528 was transferred from Escherichia coli strain DH10B, but peH4H was apparently mobilized by the coresident trimethoprim resistance-encoding plasmid pTmpR. Competition studies showed that carriage of blaCMY-2 plasmids imposed a measurable fitness cost on the host bacteria both in vitro (0.095 to 0.25) and in vivo (dairy calf model). Long-term passage experiments in the absence of antibiotics demonstrated that plasmids with limited antibiotic resistance phenotypes arose, but eventually drug-sensitive, plasmid-free clones dominated the populations. Given that plasmid decay or loss is inevitable, we infer that some level of selection is required for the long-term persistence of blaCMY-2 plasmids in bacterial populations.  相似文献   

5.
Bacterial plasmids propagate through microbial populations via the directed process of conjugative plasmid transfer (CPT). Because conjugative plasmids often encode antibiotic resistance genes and virulence factors, several approaches to inhibit CPT have been described. Bisphosphonates and structurally related compounds (BSRCs) were previously reported to disrupt conjugative transfer of the F (fertility) plasmid in Escherichia coli. We have further investigated the effect of these compounds on the transfer of two additional conjugative plasmids, pCU1 and R100, between E. coli cells. The impact of BSRCs on E. coli survival and plasmid transfer was found to be dependent on the plasmid type, the length of time the E. coli were exposed to the compounds, and the ratio of plasmid donor to plasmid recipient cells. Therefore, these data indicate that BSRCs produce a range of effects on the conjugative transfer of bacterial plasmids in E. coli. Since their impact appears to be plasmid type-dependent, BSRCs are unlikely to be applicable as broad inhibitors of antibiotic resistance propagation.  相似文献   

6.
S Harayama  M Rekik 《Gene》1989,78(1):19-27
A simple method to transfer non-conjugative Escherichia coli plasmids to other Gram-negative bacteria and their maintenance is described. This method involves generation of inverse transposition-mediated cointegrates of the non-conjugative E. coli plasmid with a conjugative IncW broad-host-range plasmid, R388, carrying Tn10. Isolation of such cointegrates was readily effected by conjugal transfer from an E. coli donor containing the two plasmids to an E. coli recipient, with selection for transconjugants expressing a marker of the E. coli plasmid. This method is particularly useful when large series of E. coli vector-based clones need to be expressed in other Gram-negative bacteria to be functionally analysed, either by complementation or recombination. Utility of the method is shown by a functional analysis in Pseudomonas putida of pBR322 hybrid plasmids containing catabolic genes of TOL plasmid pWW0.  相似文献   

7.
Ponciano JM  De Gelder L  Top EM  Joyce P 《Genetics》2007,176(2):957-968
Horizontal plasmid transfer plays a key role in bacterial adaptation. In harsh environments, bacterial populations adapt by sampling genetic material from a horizontal gene pool through self-transmissible plasmids, and that allows persistence of these mobile genetic elements. In the absence of selection for plasmid-encoded traits it is not well understood if and how plasmids persist in bacterial communities. Here we present three models of the dynamics of plasmid persistence in the absence of selection. The models consider plasmid loss (segregation), plasmid cost, conjugative plasmid transfer, and observation error. Also, we present a stochastic model in which the relative fitness of the plasmid-free cells was modeled as a random variable affected by an environmental process using a hidden Markov model (HMM). Extensive simulations showed that the estimates from the proposed model are nearly unbiased. Likelihood-ratio tests showed that the dynamics of plasmid persistence are strongly dependent on the host type. Accounting for stochasticity was necessary to explain four of seven time-series data sets, thus confirming that plasmid persistence needs to be understood as a stochastic process. This work can be viewed as a conceptual starting point under which new plasmid persistence hypotheses can be tested.  相似文献   

8.
De Gelder L  Williams JJ  Ponciano JM  Sota M  Top EM 《Genetics》2008,178(4):2179-2190
Little is known about the range of hosts in which broad-host-range (BHR) plasmids can persist in the absence of selection for plasmid-encoded traits, and whether this "long-term host range" can evolve over time. Previously, the BHR multidrug resistance plasmid pB10 was shown to be highly unstable in Stenotrophomonas maltophilia P21 and Pseudomonas putida H2. To investigate whether this plasmid can adapt to such unfavorable hosts, we performed evolution experiments wherein pB10 was maintained in strain P21, strain H2, and alternatingly in P21 and H2. Plasmids that evolved in P21 and in both hosts showed increased stability and decreased cost in ancestral host P21. However, the latter group showed higher variability in stability patterns, suggesting that regular switching between distinct hosts hampered adaptive plasmid evolution. The plasmids evolved in P21 were also equally or more stable in other hosts compared to pB10, which suggested true host-range expansion. The complete genome sequences of four evolved plasmids with improved stability showed only one or two genetic changes. The stability of plasmids evolved in H2 improved only in their coevolved hosts, not in the ancestral host. Thus a BHR plasmid can adapt to an unfavorable host and thereby expand its long-term host range.  相似文献   

9.
Transitory Derepression and the Maintenance of Conjugative Plasmids   总被引:1,自引:0,他引:1  
It has been proposed that bacterial plasmids cannot be maintained by infectious transfer alone and that their persistence requires positive selection for plasmid-borne genes. To test this hypothesis, the population dynamics of two laboratory and five naturally occurring conjugative plasmids were examined in chemostat cultures of E. coli K-12. Both laboratory plasmids and three of the five wild plasmids failed to increase in frequency when introduced at low frequencies. However, two of the naturally occurring plasmids rapidly increased in frequency, and bacteria carrying them achieved dominance in the absence of selection for known plasmid-borne genes. Three hypotheses for the invasion and persistence of these two plasmids were examined. It is concluded that although these two extrachromosomal genetic elements are repressed for conjugative pili synthesis, as a consequence of high rates of transfer during periods of transitory derepression in newly formed transconjugants, they become established and are maintained by infectious transfer alone. The implications of these observations to the theory of plasmid maintenance and the evolution of repressible conjugative pili synthesis are discussed.  相似文献   

10.
Plasmids spread very fast in heterogeneous bacterial communities   总被引:1,自引:0,他引:1  
Dionisio F  Matic I  Radman M  Rodrigues OR  Taddei F 《Genetics》2002,162(4):1525-1532
Conjugative plasmids can mediate gene transfer between bacterial taxa in diverse environments. The ability to donate the F-type conjugative plasmid R1 greatly varies among enteric bacteria due to the interaction of the system that represses sex-pili formations (products of finOP) of plasmids already harbored by a bacterial strain with those of the R1 plasmid. The presence of efficient donors in heterogeneous bacterial populations can accelerate plasmid transfer and can spread by several orders of magnitude. Such donors allow millions of other bacteria to acquire the plasmid in a matter of days whereas, in the absence of such strains, plasmid dissemination would take years. This "amplification effect" could have an impact on the evolution of bacterial pathogens that exist in heterogeneous bacterial communities because conjugative plasmids can carry virulence or antibiotic-resistance genes.  相似文献   

11.
Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.  相似文献   

12.
Three I-like conjugative plasmids, ColIdrd1, R144drd3, and R64drd11, which are derepressed for functions involved in conjugation, were found to suppress at least partially the phenotype of temperature-sensitive dnaG mutants of Escherichia coli K-12, as judged from the kinetics of deoxyribonucleic acid synthesis at elevated temperature in newly formed and established plasmid-containing strains. In contrast, the corresponding wild-type plasmids and three F-like derepressed conjugative plasmids, F101, R100drd1, and R1drd16, all failed to suppress. Suppression is presumably caused by a different plasmid-determined function from that which promotes survival of ultraviolet-irradiated bacteria, because both the wild-type I-like plasmids and their drd mutants protected irradiated bacteria. One possible interpretation of these results is that the product of a gene carried by certain I-like plasmids can substitute for the bacterial dnaG gene product during ongoing deoxyribonucleic acid replication.  相似文献   

13.
Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.  相似文献   

14.
Plasmids have been described in almost all bacterial species analysed and have proven to be essential genetic tools. In many bacteria these extrachromosomal DNAs are cryptic with no known markers or function, which makes their characterization and genetic exploitation extremely difficult. Here we describe a system that will allow the rescue of any circular DNA (plasmid or phage) using an in vitro transposition system to deliver both a selectable marker (kanamycin) and an Escherichia coli plasmid origin of replication. In this study, we demonstrate the rescue of four cryptic plasmids from the opportunistic pathogen Mycobacterium avium. To evaluate the host range of the rescued plasmids, we have examined their ability to be propagated in Mycobacterium smegmatis and Mycobacterium bovis BCG, and their compatibility with other mycobacterial plasmids. In addition, we use a library of transposon insertions to sequence one plasmid, pVT2, and to begin a genetic analysis of plasmid genes. Using this approach, we identified a putative conjugative relaxase, suggesting this myco-bacterial plasmid is transferable, and three genes required for plasmid establishment and replication.  相似文献   

15.
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.  相似文献   

16.
The conjugative plasmid R1 was introduced into ten strains of Escherichia coli isolated from natural populations. Spontaneous nalidixic-acid-resistant mutants of the ten strains served as recipients. The ten donor and recipient strains were mated in all combinations and the rate at which R1 transferred between the strains was determined. The rate of transfer ranged from 5.2 x 10(-11)-1.1 x 10(-18) ml per cell h-1, and averaged 1.3 x 10(-15) ml per cell h-1. The results of these experiments suggest that the rates of conjugative transfer are far too low for plasmids to be maintained as parasites in their host populations. Infectious transfer is insufficient; plasmids must confer a selective advantage to their host to be maintained.  相似文献   

17.
Previous theoretical studies have shown that bacterial transposons can become established in populations by infectious transfer, even if they reduce the fitness of their host cells. Conditions for the persistence of “parasitic” transposons are, however, restrictive: i) transposition must be replicative, rather than conservative; ii) the rate of transposition must be greater than the loss in host fitness caused by the transposon; and iii) cells must exchange plasmids at rates greater than the fitness cost of the transposon. I sought to test the validity of the model underlying this theory by performing experiments with laboratory populations of the bacterium Escherichia coli, the conjugative plasmid R100, and the transposons Tn3 and Tn5. A plasmid-borne transposon was introduced at low frequency into a population of bacteria carrying the same plasmid without the transposon in a habitat where the transposon offered no benefit to its host. The fate of the invading transposon was followed by tracking the various bacterial populations appearing in the cultures. Using independent estimates of the parameters of the model, predicted population changes were generated with numerical solutions of the model, and these were compared to experimental results. Plasmids transferred into new hosts as predicted by the model, and the resulting transconjugant populations either maintained a steady low density or rose slowly in abundance. Transposition appeared to play no role in population changes. Abundance of all cell types fit theoretical predictions of a system with no transposition, despite evidence that transposition was taking place. This is exactly what the model predicted. It thus appears unlikely that deleterious or neutral transposons have much impact on the genetics of bacterial populations. This is consistent with the hypothesis that most bacterial transposons are not parasitic DNA, but rather invade and persist in populations by providing a fitness advantage to cells carrying them.  相似文献   

18.
Cytophaga johnsonae displays many features that make it an excellent model of bacterial gliding motility. Unfortunately, genetic analyses of C. johnsonae, or any related gliding bacteria, were not possible because of a complete lack of selectable markers, cloning vectors, transposons, and convenient methods of gene transfer. As a first step toward a molecular analysis of gliding motility of C. johnsonae, we developed these genetic techniques and tools. Common broad-host-range plasmids and transposons did not function in C. johnsonae. We identified one Bacteroides transposon, Tn4351, that could be introduced into C. johnsonae on plasmid R751 by conjugation from Escherichia coli. Tn4351 inserted in the C. johnsonae genome and conferred erythromycin resistance. Tn-4351 insertions resulted in auxotrophic mutations and motility mutations. We constructed novel plasmids and cosmids for genetic analyses of C. johnsonae. These cloning vectors are derived from a small cryptic plasmid (pCP1) that we identified in the fish pathogen Cytophaga psychrophila D12. These plasmids contain the ermF (erythromycin resistance) gene from Tn4351 and a variety of features that facilitate propagation and selection in E. coli and conjugative transfer from E. coli to C. johnsonae.  相似文献   

19.
The plasmid RSF1010 belongs to a class of plasmids (IncQ) that replicate in a range of bacterial hosts. Although non-self-transmissible, it can be mobilized at high frequency between different gram-negative bacterial species if transfer functions are supplied in trans. We report the transfer of RSF1010 by conjugation from Escherichia coli to the gram-positive actinomycetes Streptomyces lividans and Mycobacterium smegmatis. In its new hosts, the plasmid was stable with respect to structure and inheritance and conferred high-level resistance to streptomycin and sulfonamide. This is the first reported case of conjugative transfer of a naturally occurring plasmid between gram-negative and gram-positive bacteria.  相似文献   

20.
A 43-MDa conjugative plasmid isolated from an avian septicemic Escherichia coli (APEC) strain possessing genes related to the adhesion and invasion capacities of in vitro-cultured cells was sequenced. The results demonstrated that the 43-MDa plasmid harbors bacterial pathogenicity-related sequences which probably allow the wild-type pathogenic strain to adhere to and invade tissues and to cause septicemia in poultry. The existence of homology sequences to sequences belonging to other human pathogenic Enterobacteriaceae like Escherichia coli O157:H7, Shigella and Salmonella was also observed. The presence of these sequences in this plasmid could indicate that there is horizontal genetic transfer between bacterial strains isolated from different host species. In conclusion, the present study suggests that APEC strains harbor high-molecular weight plasmids that present pathogenicity-related sequences and that these are probably responsible for the pathogenicity exhibited by these strains. The presence of human pathogenicity-associated sequences in APEC conjugative plasmids suggests that these strains could represent a zoonotic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号