首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to quantify the effect of bottom and suspended mussel cultures, cultured in different physical environments, on the sedimentary environmental conditions and thereby the biodiversity structure of the associated macrofaunal community. We compared two bottom cultures (Limfjorden: microtidal, wind-driven; Oosterschelde: macrotidal) and one suspended culture (Ria de Vigo in an upwelling coastal region). The sedimentary environmental conditions (mud fraction, POC, PON, phosphorus content, chl a breakdown products) were significantly elevated underneath and surrounding bottom and suspended cultures compared to culture-free sediments that were nearby and hydrodynamically similar. The relative change in environmental conditions was more pronounced in the Oosterschelde compared to Limfjorden, most likely due to differences in hydrodynamic forcing and characteristics of the mussel bed. The effect of the suspended cultures in Ria de Vigo on the surrounding sediments was influenced by local topographic and hydrodynamic conditions. The impact of mussels on the benthic community due to biodeposition was clearly seen in the community structure. The species composition changed from species which are typically present in sandy environments to more small opportunistic species, which are typically present in organically enriched sediments. The impact of bottom cultures on the benthic community due to changes in the habitat under the presence of mussels was positive, especially in the Oosterschelde where an increase in the number of epibenthic species was seen. The influence of bottom cultures on the sedimentary environment and on the macrobenthic community seems to be very local. Within the mussel site in Limfjorden, differences were detected between sites where none or almost no mussels were present with sites where mussels were very abundant.  相似文献   

2.
1. To investigate the impact of zebra mussels ( Dreissena polymorpha ) on phytoplankton community composition, temporal variability in selective feeding by the mussels was determined from April to November 2005 in a natural lake using Delayed Fluorescence (DF) excitation spectroscopy.
2. Selective grazing by zebra mussels varied in relation to seasonal phytoplankton dynamics; mussels showed a consistent preference for cryptophytes and avoidance of chlorophytes and cyanobacteria. Diatoms, chrysophytes and dinoflagellates responded differentially to zebra mussel grazing depending on their size. Analysis of excreted products of the zebra mussels revealed that in addition to chlorophytes and cyanobacteria, phytoplankton >50  μ m and very small phytoplankton (≤7  μ m) were largely expelled in pseudofaeces.
3. The zebra mussel is a selective filter-feeder that alters its feeding behaviour in relation to phytoplankton composition to capture and ingest high quality phytoplankton, especially when phytoplankton occur in preferred size ranges. Flexibility of zebra mussel feeding behaviour and variation in susceptibility among phytoplankton groups to mussel ingestion indicate that invading zebra mussels could alter phytoplankton community composition of lakes and have important ecosystem consequences.  相似文献   

3.
Dolmer  P.  Kristensen  T.  Christiansen  M. L.  Petersen  M. F.  Kristensen  P. S.  Hoffmann  E. 《Hydrobiologia》2001,465(1-3):115-127
The short-term effect of mussel dredging in a brackish Danish sound was studied. A commercial dredging track was identified and an analysis of the species composition inside the track and at an adjacent control area showed that dredging changed the community structure by reducing the density of polychaetes. In order to investigate the extent and the duration of the dredging impact experimental dredging was conducted. The experimental dredging removed 50% of the mussels in two dredged areas. Immediately after dredging, a significantly lower number of species was measured inside the mussel beds in dredged areas compared to control and boundary areas. This effect lasted for at least 40 days. The analysis of the species composition showed that the dredged area had a significantly lower density, particularly of polychaetes compared to the boundary area. An increased number of species was recorded outside the mussel beds just after dredging, but this effect lasted for less than 7 days. After dredging, brown shrimps, C. crangon invaded the dredged areas. This species is an important predator of smaller invertebrates, and it is suspected that it was feeding on small vulnerable polychaetes exposed at the sediment surface after dredging. The dredging process was observed to form 2–5-cm deep furrows in the seabed, but the sediment texture and the organic content of the sediment was not affected. The biomass accumulation of individual blue mussels was significantly lower in the dredged area compared to the boundary area. This indicates that the disturbance of the mussel bed structure reduced growth and that the lowering of intraspecific food competition caused by a reduced density of mussels did not increase the accumulation of biomass in the mussels which remained in the dredged area.  相似文献   

4.

The global loss of marine ecosystem engineers has caused an unprecedented decline in biodiversity. Although wild shellfish habitats have been shown to support biodiverse ecosystems, little is known about how biodiversity is altered by restored shellfish habitats, particularly mussels. To explore the biodiversity response to restored mussel habitats we deposited mussels on the seafloor in 1.5?×?1.5 m plots across a gradient of benthic environments. To understand a holistic community response, this study looks at the response of three faunal classifications over 1 year: infauna, epifauna, and pelagic fauna, compared with adjacent control plots (no mussels). The restored mussel habitats recorded 42 times more demersal fish than control areas, while macroalgae and mobile benthic invertebrates had over a twofold increase in abundance. Overall, the addition of mussels to the seafloor resulted in a general reduction of infaunal abundance and biodiversity, but an increase in epifaunal and pelagic faunal abundances, specifically from those species that benefit from benthic habitat complexity and an increase in food availability. From a management perspective, we highlight location-specific differences to consider for future restoration efforts, including environmental conditions and potential observed factors such as nearby sources of species, particularly predators, and relevant demersal fish ranges. Ultimately, measuring biodiversity responses in small-scale studies will serve as a valuable guide for larger scale restoration efforts and this study recommends considerations to enhance biodiversity outcomes in restored mussel habitats.

  相似文献   

5.
SUMMARY 1. The POTAMON model [Everbecq E. et al . (2001) Water Research , 35 , 901] has been used to simulate the effect of benthic bivalves (mainly Dreissena polymorpha ) on the phytoplankton and zooplankton in a lowland Western European river (the Moselle). Here we use a modified version of the POTAMON model with five categories of phytoplankton ( Stephanodiscus , Cyclotella -like, large diatoms, Skeletonema and non-siliceous algae) to model filter-feeding effects of benthic bivalves in the Moselle. Zooplankton has been represented in the model by two categories, Brachionus -like and Keratella -like rotifers.
2. According to density estimates from field surveys (Bachmann V. et al . (1995) Hydroécologie Appliquée , 7 , 185, Bachmann V. & Usseglio-Polatera P. (1999) Hydrobiologia , 410 , 39), zebra mussel density varied among river stretches, and increased through the year to a maximum in summer. Dreissena filtration rates from the literature were used, and mussels have been assumed to feed on different phytoplankton categories (but less on large and filamentous diatoms) as well as on rotifers.
3. The simulations suggest a significant impact of benthic filter-feeders on potamoplankton and water quality in those stretches where the mussels are abundant, their impact being maximal in summer. Consequently, different plankton groups were not affected to the same extent, depending on their period of development and on indirect effects, such as predation by mussels on herbivorous zooplankton.
4. A daily carbon balance for a typical summer shows the effect of benthic filter-feeders on planktonic and benthic processes: the flux of organic matter to the bottom is greatly enhanced at high mussel density; conversely, production and breakdown of organic carbon in the water column are reduced. Mussel removal would drive the carbon balance of the river toward autotrophy only in the downstream stretches.  相似文献   

6.
Dreissenid mussels have been hypothesized to cause selective decreases of phytoplankton in nearshore areas (nearshore shunt hypothesis) as well as the near-complete loss of the offshore phytoplankton spring bloom in some Laurentian Great Lakes. To evaluate whether mussels can reasonably be expected to mediate such changes, we extended the three-dimensional hydrodynamic-ecological model (ELCOM-CAEDYM) to include mussels as a state variable and applied it to Lake Erie (USA-Canada). Mussel-mediated decreases in mean phytoplankton biomass were highly sensitive to the assigned mussel population size in each basin. In the relatively deep east basin, mussels were predicted to decrease phytoplankton in both nearshore and offshore zones, even during periods of thermal stratification but especially during the spring phytoplankton maximum. Spatially, impacts were associated with mussel distributions but could be strong even in areas without high mussel biomass, consistent with advection from areas of higher mussel biomass. The results supported the nearshore shunt hypothesis that mussel impacts on phytoplankton should be greater in nearshore than offshore waters and also supported suggestions about the emerging importance of deep water offshore mussels. The results of this study provide an important insight into ecological role of mussels in lowering plankton productivity in some world’s largest lakes.  相似文献   

7.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

8.
9.
To evaluate the effects of a large scale coastal engineering project on the mussel (Mytilus edulis) bottom culture in the Oosterschelde estuary (S.W. Netherlands), mussel growth and production in the period 1980–1990 are studied in relation to food supply and the hydrodynamic conditions. Due to the construction of a storm-surge barrier and two additional dams, the risk that mussels are swept away by high current velocities decreased, resulting in an increase of the area in the Oosterschelde potentially suitable for mussel culture and in food availability now being more important as a limiting factor. For the Oosterschelde, a clear relation between mussel growth, stock sizes, and phytoplankton dynamics has been demonstrated. The meat yield of mussels landed in autumn — which is an index for growth rate — seems to be determined by the phytoplankton production in the preceding summer. In years with dense bivalve stocks, phytoplankton production and meat yields are relatively low. It is concluded that an increase of the mussel biomass cultured can result in a reduction of the primary production and, consequently, in a deterioration of the growing conditions for suspension-feeders in the estuary. This conclusion is supported by model calculations. An expansion of mussel culture in the new Oosterschelde is therefore dissuaded. Apart from primary production and stock sizes, food supply for mussels on culture lots appeared to be controlled by the horizontal advection of phytoplankton between and within the tidal channels. An observed decline in mussel landings from certain areas is attributed to the reduced mixing energy of the estuary in relation to the present distribution of the lots over the estuary. Production figures from the experimental lots, established in 1988 in the newly available areas, demonstrate that the yield of mussels can be enhanced by relaying culture lots towards the areas where the phytoplankton is produced. It is expected that by redistributing the culture lots, without expanding the biomass cultured, the carrying capacity of the Oosterschelde for mussel culture can be maintained.  相似文献   

10.
Blue mussels (Mytilus edulis L.) are a valuable resource for commercial shellfish production and may also have uses as a tool in habitat improvement, because mussel beds can increase habitat diversity and complexity. A prerequisite for both commercial mussel production and habitat improvement is the availability of seed mussels collected with minimum impact on the benthic ecosystem. To examine whether mussels collected in suspended cultures can be used for bottom culture production and as tool in habitat improvement, the differences in predatory defence responses between suspended and bottom mussels exposed to the predatory shore crab (Carcinus maenas L.) were tested in laboratory experiments and in the field. Predatory defence responses (byssal attachment and aggregation) and morphological traits were tested in laboratory, while growth and mortality were examined in field experiments. Suspended mussels had an active response in relation to the predator by developing a significantly firmer attachment to the substrate and a closer aggregated structure. Bottom mussels had a passive strategy by having a thicker shell and larger relative size of the adductor muscle. In a field experiment mussels originated from suspended cultures had a higher length increment and lower mortality when compared to bottom mussels. It is concluded that suspended mussels potentially are an alternative resource to bottom culture and can be used in habitat improvement of mussel beds, but that the use of suspended mussels has to be tested further in large-scale field experiments.  相似文献   

11.
Habitat engineering role of the invasive zebra mussel Dreissena polymorpha (Pallas) was studied in the Curonian lagoon, a shallow water body in the SE Baltic. Impacts of live zebra mussel clumps and its shell deposits on benthic biodiversity were differentiated and referred to unmodified (bare) sediments. Zebra mussel bed was distinguished from other habitat types by higher benthic invertebrate biomass, abundance, and species richness. The impact of live mussels on biodiversity was more pronounced than the effect of shell deposits. The structure of macrofaunal community in the habitats with >103 g/m2 of shell deposits devoid of live mussels was similar to that found within the zebra mussel bed. There was a continuous shift in species composition and abundance along the gradient ‘bare sediments—shell deposits—zebra mussel bed’. The engineering impact of zebra mussel on the benthic community became apparent both in individual patches and landscape-level analyses.  相似文献   

12.
The feeding ecology of the green-lipped mussel, Perna canaliculus, was investigated within three intertidal mussel beds along Ninety Mile Beach, northern New Zealand, between August 2000 and March 2001. Adult mussels of different sizes (45-105 mm in shell length) were collected from the intertidal sites about 30 min after being submerged by the incoming tide for gut content analyses. Results of these analyses indicate that mussels consume a variety of phytoplankton, micro- and mesozooplankton, including mussel larvae and post-larvae. Cannibalism of juveniles of up to 620 μm was recorded for intertidal mussels, and conspecifics of up to 2.4 mm were found within the stomachs of additional mussels collected in August 2000 from a nearby subtidal site. For all three intertidal populations, mussel larvae and juveniles contribute about 70% of the food particle consumption during the spawning peak in August, while phytoplankton and other zooplankton constitute the majority of the food source (about 99%) in March, during gametogenesis. Larger intertidal mussels tended to have more food particles in their stomachs than smaller mussels within all three populations. Distinctive differences in food consumption among intertidal populations directly coincide with variations in total particulate matter (TPM), particulate organic matter (POM) and percent organic matter (OM) in the adjacent seawater.Separate experiments designed to test the feeding behavior of mussels feeding at different times during the incoming tide were conducted at one of the intertidal sites during August 2000 and March 2001. Results from these experiments indicate a marked shift in food consumption from bivalves to other mesozooplankton in August, and from phytoplankton to mesozooplankton in March. The observed combination of mussel predatory and grazing behavior over the incoming tide and through the year provides evidence for a strong food-web link between the benthic and pelagic life stages of this species. Furthermore, the high rate of cannibalism during some months of the year suggests that this source of food may significantly contribute to the energy budget of wild populations, with potential implications for evolutionary adaptive success.  相似文献   

13.
Limnoperna fortunei, or golden mussel, has invaded aquatic ecosystems in the Americas following it introduction from Southeast Asia. It is not only an aggressive invasive species, it is also a very effective ecosystem engineer, altering both ecosystem structure and function, and causes great ecological and economic impacts. This paper describes its impact as an ecosystem engineer (on benthic communities and the water column). A review of the existing scientific literature is presented, and the impact and the mechanisms by which the golden mussel modifies, maintains, and creates new environmental conditions in the invaded South American inland freshwater environments are analyzed. Understanding the ecosystem engineering roles of L. fortunei is important for its management and/or control in the invaded areas, and in cases of future invasions.  相似文献   

14.
Coastal upwelling regions, which are affected by equatorward‐wind variability, are among the most productive areas of the oceans. It has been suggested that global warming will lead to a general strengthening of coastal upwelling, with important ecological implications and an impact on fisheries. However, in the case of the Iberian upwelling, the long‐term analysis of climatological variables described here reveals a weakening in coastal upwelling. This is linked to a decrease of zonal sea level pressure gradient, and correlated with an observed increase of sea surface temperature and North Atlantic Oscillation. Weakening of coastal upwelling has led to quantifiable modifications of the ecosystem. In outer shelf waters a drop in new production over the last 40 years is likely related to the reduction of sardine landings at local harbors. On the other hand, in inner shelf and Ria waters, the observed weakening of upwelling has slowed down the residual circulation that introduces nutrients to the euphotic layer, and has increased the stability of the water column. The drop in nutrient levels has been compensated by an increase of organic matter remineralization. The phytoplankton community has responded to those environmental trends with an increase in the percentage of dinoflagellates and Pseudonitzschia spp. and a reduction in total diatoms. The former favors the proliferation of harmful algal blooms and reduces the permitted harvesting period for the mussel aquaculture industry. The demise of the sardine fishery and the potential threat to the mussel culture could have serious socio‐economic consequences for the region.  相似文献   

15.
1. We asked whether unionid mussels influence the distribution and abundance of co‐occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south‐central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co‐occurring benthic community, but that effects of mussels are context‐dependent and may vary among species.  相似文献   

16.
Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under‐represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature‐dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2‐fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5–3 µm), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.  相似文献   

17.
Benthic component of an ecosystem is considered in ecological status assessment of the key European Directives. Most of the metrics proposed for the benthic quality assessment are biodiversity based. Their robustness and applicability are widely discussed in many recent studies. However an impact of invasive alien species on biotic indices and environmental quality assessments has been largely overlooked by researchers so far. In the current study we assessed Benthic Quality Index (BQI) in a coastal ecosystem, highly affected by the invasive zebra mussel Dreissena polymorpha. Zebra mussel is able of modifying benthic habitats and enhancing local biodiversity. In the analyzed ecosystem it affected benthic species richness, abundance and community structure. As a result the calculated BQI values were significantly higher in the presence of zebra mussel with evident outliers in samples with particularly high zebra mussel abundances. Therefore we found that BQI determined in our study was artificially elevated providing false signal of the ecological status improvement. Based on the results presented, we suggested data correction framework that has been tested on the current dataset and proved to be effective minimizing zebra mussel impact on BQI assessment. Our experience could be applied for other coastal ecosystems invaded by the zebra mussel or any other aquatic invasive species with resembling biological traits and bioinvasion impacts.  相似文献   

18.
Extreme hydro‐meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south central USA, where rapidly growing urban areas are running out of water and human‐engineered water storage and management are leading to broad‐scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma, USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long‐lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought‐induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20‐year period that included two severe droughts. We then used laboratory‐derived physiological rates and river‐wide estimates of species‐specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought‐induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and prevent compounded anthropogenic stressors.  相似文献   

19.
Species interactions between two types of sessile benthic invertebrates, the zebra mussel (Dreissena polymorpha) and freshwater sponges (Porifera), were evaluated in Michigan City IN Harbor in southern Lake Michigan during 1996. The study objective was to define whether competition plays a role in structuring benthic communities using experimental techniques commonly employed in marine systems. Sponges were uninhibited by zebra mussel presence and overgrew zebra mussel shells on hard vertical substrata. In contrast, zebra mussels did not overgrow sponge colonies, but did show an ability to re-capture hard substrata if relinquished by the sponge. The negative affect of sponges on zebra mussels through overgrowth and recruitment suggests interactions that could eventually displace zebra mussels from these benthic communities. However, seasonal reduction of sponge biomass from autumn through winter appears to allow the zebra mussel a periodic respite from overgrowth, preventing exclusion of zebra mussels from the community and allowing these two taxa to co-exist.  相似文献   

20.
Many observational studies in North American lakes have documenteddecreases in phytoplankton abundance after the invasion of thezebra mussel (Dreissena polymorpha). However, few field experimentshave examined in detail the effect of zebra mussels on phytoplanktonabundance and species composition over an extended period. Replicatedin situ mesocosms were used to evaluate the impact of naturaldensities of zebra mussels on phytoplankton and ciliate biovolume,and algal species composition over a 5-week period in a habitatthat lacked extant mussel populations. Mussel biomass used inthe experiment was determined using a regression model basedon a data analysis that predicts zebra mussel biomass from totalphosphorus concentration. Within 1 week, zebra mussels decreasedphytoplankton biovolume by 53% and ciliate biovolume by 71%.The effect of zebra mussels on ciliate biovolume was sustainedthroughout the study. However, the effect of zebra mussels onphytoplankton abundance gradually waned over the remaining 4weeks of the experiment, such that the declining effect of zebramussels could not be explained by a shift towards less edibleand/or faster growing algal species. The mussels’ decliningcondition could help to explain the effect observed over thecourse of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号