首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemokine receptor genes of the CCR cluster on human chromosome 3p21 play important roles in humoral and cellular immune responses. Several of these receptors have been shown to influence human immunodeficiency virus infection and progression to AIDS, and their homologues may play a role in feline immunodeficiency virus infection. We report the isolation and sequencing of a 150-kb domestic cat BAC clone containing the feline CCR genes CCR1, CCR2, CCR3, and CCR5 to further analyze these four receptor genes within the family Felidae. Comparative and phylogenetic analyses reveal evidence for historic gene conversion between the adjacent CCR2 and CCR5 genes in the Felidae and in three independent mammalian orders (Primates, Cetartiodactyla, and Rodentia), resulting in higher than expected levels of sequence similarity between the two paralogous genes within each order. The gene conversion was restricted to the structural (transmembrane) domains of the CCR2 and CCR5 genes. We also discovered a recent gene conversion event between the third extracellular loop of CCR2 and CCR5 genes that was fixed in Asian lions and found at low frequency in African lions (Panthera leo), suggesting that this domain may have an important functional role. Our results suggest that ongoing parallel gene conversion between CCR2 and CCR5 promotes receptor heterodimerization in independent evolutionary lineages and offers an effective adaptive strategy for gene editing and coevolution among interactive immune response genes in mammals.  相似文献   

2.
3.
The chemokine receptor CCR5 is the major fusion coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). To define the structures of CCR5 that can support envelope (Env)-mediated membrane fusion, we analyzed the activity of homologs, chimeras, and mutants of human CCR5 in a sensitive gene reporter cell-cell fusion assay. Simian, but not murine, homologs of CCR5 were fully active as HIV-1 fusion coreceptors. Chimeras between CCR5 and divergent chemokine receptors demonstrated the existence of two distinct regions of CCR5 that could be utilized for Env-mediated fusion, the amino-terminal domain and the extracellular loops. Dual-tropic Env proteins were particularly sensitive to alterations in the CCR5 amino-terminal domain, suggesting that this domain may play a pivotal role in the evolution of coreceptor usage in vivo. We identified individual residues in both functional regions, Asp-11, Lys-197, and Asp-276, that contribute to coreceptor function. Deletion of a highly conserved cytoplasmic motif rendered CCR5 incapable of signaling but did not abrogate its ability to function as a coreceptor, implying the independence of fusion and G-protein-mediated chemokine receptor signaling. Finally, we developed a novel monoclonal antibody to CCR5 to assist in future studies of CCR5 expression.  相似文献   

4.
We have evaluated the molecular evolution of the chemokine receptor CCR5 in primates. The chemokine receptor CCR5 serves as a major co-receptor for human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection. Knowledge of evolution of the CCR5 molecule and selection on the CCR5 gene may shed light on its functional role. The comparison of differences between intraspecific polymorphisms and interspecific fixed substitutions provides useful information regarding modes of selection during the course of evolution. There is marked polymorphism in the CCR5 gene sequence within different primate species, whereas sequence divergence between different species is small. By using contingency tests, we compared synonymous (SS) and nonsynonymous (NS) CCR5 mutations occurring within and between a broad range of primates. Our results demonstrate that CCR5 evolution did not follow expectations of strict neutrality at the level of the whole gene. The proportion of NS to SS at the intraspecific level was significantly higher than that observed at the interspecific level. These results suggest that most CCR5 NS polymorphisms are slightly deleterious. However, at domains more closely correlated with its known biological functions, there was no obvious evidence to support deviation from neutrality.  相似文献   

5.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

6.

Background  

CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions.  相似文献   

7.
Parody TR  Stone MJ 《Cytokine》2004,27(1):38-46
The specificity of leukocyte trafficking in inflammation is controlled by the interactions of chemokines with chemokine receptors. Reliable structure-function studies of chemokine-receptor interactions would benefit from cell lines that express consistent high levels of chemokine receptors. We describe herein two new Chinese hamster ovary (CHO) cell lines in which the genes for chemokine receptors CCR2 and CCR3 have been incorporated into identical positions in the host genome. CCR2 is the primary receptor for the chemokine monocyte chemoattractant protein-1 (MCP-1) whereas CCR3 is the primary receptor for the chemokines eotaxin-1, eotaxin-2 and eotaxin-3. Both receptors are expressed at >5,000,000 copies per cell, substantially higher levels than in previous cell lines, and both are competent for binding and activation by the cognate chemokines for these receptors. Using these cell lines we confirm that eotaxin-1 and eotaxin-3 can act as an agonist and an antagonist, respectively, of CCR2. In addition, we show that eotaxin-2 is an antagonist of CCR2 and MCP-1 is an agonist of CCR3. Comparison of the chemokine sequences reveals several positions that are identical in MCP-1 and eotaxin-1 but different in eotaxin-2 and eotaxin-3, suggesting that these amino acids play a role in CCR2 activation.  相似文献   

8.
陶敏  樊棠怀  徐立中  胡成钰 《遗传》2007,29(12):1519-1524
Branch-Site模型是检测基因序列中单个密码子位点是否具有选择作用的统计学方法。该模型能有效地检测基因在进化历程中是否受到选择作用, 并预测出那些在进化过程中对功能分化有重要贡献的、受正选择作用的密码子位点。趋化因子是一类控制免疫细胞定向迁移的细胞因子, 其功能行使由趋化因子受体介导。该文用Branch-Site模型分析趋化因子及其受体基因家族的分子适应性, 发现只有少数种类基因受到正选择作用, 如RANTES、CCR5等。并预测出一些可能受到正选择作用的位点, 蛋白3D分析显示, 它们均位于趋化因子和相应受体相互作用的结构区域。  相似文献   

9.
Chemokine receptors (CCRs) play an essential role in the initiation of an innate immune host response. Several of these receptors have been shown to modulate the outcome of viral infections. The recent availability of complete genome sequences from a number of species provides a unique opportunity to analyze the evolution of the CCR genes. A phylogenetic analysis revealed that the CCR2 gene evolved in concert with the paralogous CCR5 gene, but not with another paralogous gene, CCR3, in the opossum, platypus, rabbit, guinea pig, cat, and rodent lineages. In addition, evidence of concerted evolution of the CCR2 and CCR5 genes was observed in chicken and lizard genomes. A unique CCR5/2 gene that originated by unequal crossing over between the CCR2 and CCR5 genes was detected in the domestic horse. The CCR2, CCR5, and CCR5/2 genes were mapped to ECA16q21 using fluorescent in situ hybridization (FISH). Single-nucleotide polymorphisms identified in the equine CCR5 gene and characterized within 5 horse breeds provide haplotype markers for future case/control studies investigating the genetic bases of horse susceptibility to infectious diseases.  相似文献   

10.
It is now well established that HIV-1 requires interactions with both CD4 and a chemokine receptor on the host cell surface for efficient infection. The expression of the CCR5 chemokine receptor in human macrophages facilitates HIV-1 entry into these cells, which are considered important in HIV pathogenesis not only as viral reservoirs but also as modulators of altered inflammatory function in HIV disease and AIDS. LPS, a principal constituent of Gram-negative bacterial cell walls, is a potent stimulator of macrophages and has been shown to inhibit HIV infection in this population. We now present evidence that one mechanism by which LPS mediates its inhibitory effect on HIV-1 infection is through a direct and unusually sustained down-regulation of cell-surface CCR5 expression. This LPS-mediated down-regulation of CCR5 expression was independent of de novo protein synthesis and differed from the rapid turnover of these chemokine receptors observed in response to two natural ligands, macrophage-inflammatory protein-1alpha and -1beta. LPS did not act by down-regulating CCR5 mRNA (mRNA levels actually increased slightly after LPS treatment) or by enhancing the degradation of internalized receptor. Rather, the observed failure of LPS-treated macrophages to rapidly restore CCR5 expression at the cell-surface appeared to result from altered recycling of chemokine receptors. Taken together, our results suggest a novel pathway of CCR5 recycling in LPS-stimulated human macrophages that might be targeted to control HIV-1 infection.  相似文献   

11.
PURPOSE OF REVIEW: Atherosclerosis is an inflammatory disease process. This review discusses the recent genetic evidence from animal models and human populations that highlight the importance of chemokines in atherosclerosis. RECENT FINDINGS: CC-chemokine/CC-chemokine receptors (CCR), including CCR2/ MCP-1 (monocyte chemoattractant protein-1) and CCR5/RANTES (regulated on activation, normal T-cell expressed and secreted), have been shown in animal knockout and transgenic studies to have significant effects on atherosclerotic lesion size and macrophage recruitment. More recently fractalkine (CX3C1) and its receptor (CX3CR1) have emerged as another important pathway in atherosclerosis. For example, fractalkine is present in human atherosclerotic lesions and is able to stimulate platelet activation and adhesion. CX3CR1 is expressed on human aortic smooth muscle cells and CX3CR1/apolipoprotein E double knockout mice have significantly reduced atherosclerotic lesion size and macrophage recruitment. Human population genetic studies have tried to assess the importance of chemokines in human atherosclerosis. Currently, there is conflicting evidence regarding an association between polymorphisms in CCR2/MCP-1 and CCR5/RANTES and coronary artery disease. There is evidence, however, for an association between the fractalkine receptor polymorphism (CX3CR1-I249) and coronary artery disease in both human population and function studies. SUMMARY: Recent transgenic and gene knockout studies in murine models of atherosclerosis have highlighted the importance of chemokines and their receptors in atherosclerosis. Genetic evidence for a role of chemokines and their receptors in human population studies remains under investigation. Identifying chemokine polymorphisms could help to determine pathways that are important in atherosclerosis disease pathology and that may suggest novel therapeutic targets.  相似文献   

12.
Chronic rejection is an immune process leading to graft failure. By regulating the trafficking of leukocytes, chemokines and chemokine receptors are thought to be one of the reasons causing acute renal rejection (ARE), which increases the possibility of chronic rejection and organ destruction. This study was designed to investigate, in the Turkish population, an association of chemokine receptor genetic variants, CCR2V641, CCR5-59029-A/G, CCR5-Delta32 and acute renal rejection after renal transplant surgery. We carried out our study in 85 Turkish renal transplant patients (45 men, 40 women; mean age 39 +/- 2 years) by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) techniques. We found no significant difference in the incidence of rejection among patients possessing or lacking CCR5-Delta32. For the groups with and without acute renal rejection, we found a significant difference between the groups in A and G allele distribution in both CCR2V641and CCR559029 gene variants (p = 0.003 and p = 0.003, respectively). According to our findings, the risk of acute rejection in renal transplantation may be associated with genetic variation in the chemokine receptor genes CCR5-59029 and CCR2V641 in Turkey, and studies on these gene polymorphisms could be an ideal target for future interventions intended to prevent renal transplant loss.  相似文献   

13.
Chemokines are believed to play a role in the neuropathogenesis of AIDS through their recruitment of neurotoxin-secreting, virally infected leukocytes into the CNS. Levels of chemokines are elevated in brains of patients and macaques with HIV/SIV-induced encephalitis. The chemokine receptors CCR3, CCR5, and CXCR4 are found on subpopulations of neurons in the cortex of human and macaque brain. We have developed an in vitro system using both macaque and human fetal neurons and astrocytes to further investigate the roles of these receptors in neuronal response to inflammation. Here we report the presence of functional HIV/SIV coreceptors CCR3, CCR5, and CXCR4 on fetal human and macaque neurons and CCR5 and CXCR4 on astrocytes immediately ex vivo and after several weeks in culture. Confocal imaging of immunostained neurons demonstrated different patterns of distribution for these receptors, which may have functional implications. Chemokine receptors were shown to respond to their appropriate chemokine ligands with increases in intracellular calcium that, in the case of neurons, required predepolarization with KCl. These responses were blocked by neutralizing chemokine receptor in mAbs. Pretreatment of neural cells with pertussis toxin abolished responses to stromal-derived factor-1alpha, macrophage inflammatory protein-1beta, and RANTES, indicating coupling of CCR5 and CXCR4 to a Gialpha protein, as in leukocytes. Cultured macaque neurons demonstrated calcium flux response to treatment with recombinant SIVmac239 envelope protein, suggesting a mechanism by which viral envelope could affect neuronal function in SIV infection. The presence of functional chemokine receptors on neurons and astrocytes suggests that chemokines could serve to link inflammatory and neuronal responses.  相似文献   

14.
15.
Chemokines and their receptors are essential in the recruitment and positioning of lymphocytes. To address the question of B cell migration into the inflamed synovial tissue of patients with rheumatoid arthritis (RA), peripheral blood naive B cells, memory B cells and plasma cells were analyzed for cell surface expression of the chemokine receptors CXCR3, CXCR4, CXCR5, CCR5, CCR6, CCR7 and CCR9. For comparison, B cells in the peripheral blood of patients with the autoimmune disease systemic lupus erythematosus (SLE) or with the degenerative disease osteoarthritis (OA) were analyzed. Expression levels of chemokine receptors were measured by flow cytometry and were compared between the different patient groups and healthy individuals. The analysis of chemokine receptor expression showed that the majority of peripheral blood B cells is positive for CXCR3, CXCR4, CXCR5, CCR6 and CCR7. Whereas a small fraction of B cells were positive for CCR5, practically no expression of CCR9 was found. In comparison with healthy individuals, in patients with RA a significant fraction of B cells showed a decreased expression of CXCR5 and CCR6 and increased levels of CXCR3. The downregulation of CXCR5 correlated with an upregulation of CXCR3. In patients with SLE, significant changes in CXCR5 expression were seen. The functionality of the chemokine receptors CXCR3 and CXCR4 was demonstrated by transmigration assays with the chemokines CXCL10 and CXCL12, respectively. Our results suggest that chronic inflammation leads to modulation of chemokine receptor expression on peripheral blood B cells. However, differences between patients with RA and patients with SLE point toward a disease-specific regulation of receptor expression. These differences may influence the migrational behavior of B cells.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

17.
Microarray technology was utilized to isolate disease-specific changes in gene expression by sampling across inferior parietal lobes of patients suffering from late onset AD or non-AD-associated dementia and non-demented controls. Primary focus was placed on understanding how inflammation plays a role in AD pathogenesis. Gene ontology analysis revealed that the most differentially expressed genes related to nervous system development and function and neurological disease followed by genes involved in inflammation and immunological signaling. Pathway analysis also implicated a role for chemokines and their receptors, specifically CXCR4 and CCR3, in AD. Immunohistological analysis revealed that these chemokine receptors are upregulated in AD patients. Western analysis demonstrated an increased activation of PKC, a downstream mediator of chemokine receptor signaling, in the majority of AD patients. A very specific cohort of genes related to amyloid beta accumulation and clearance were found to be significantly altered in AD. The most significantly downregulated gene in this data set was the endothelin converting enzyme 2 (ECE2), implicated in amyloid beta clearance. These data were subsequently confirmed by real-time PCR and Western blot analysis. Together, these findings open up new avenues of investigation and possible therapeutic strategies targeting inflammation and amyloid clearance in AD patients.  相似文献   

18.
洪梅 《生命科学》2000,12(2):76-79
化学趋化因子受体作为协同受体,为人免疫缺陷病毒(HIV-1)进入细胞所必需。其中CXCR4被亲T细胞的病毒株利用,而CCR5被亲巨噬细胞的病毒株利用,它们是大多数病毒株利用的协同受体。协同受体和CD4一起形成复合受体,gp120与之结合后发生构象改变,使gp41暴露出来,引起膜的融合。HIV协同受体发现为治疗艾滋病开辟了新的途径。利用趋化因子拮抗剂、单克隆抗体和天然配体封闭趋化因子受体可阻止HIV  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号