首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 'random transition probability' cell-cycle models have so far failed to convincingly link the transition events with phenomena describable by biochemical methods. The study presented was carried out on the F9 and PCC3 N/1 embryonal carcinoma (EC) cell lines. We now report an extended analysis of the two-random transition probability (TP) model and preliminary results are presented showing that the deterministic L period in that model can be regarded as reflecting the 'cell-growth cycle'. Evidence is presented that suggests that the 'cell-growth cycle' is a supramitotic deterministic phase--i.e. starting in one cell cycle and being completed in the next following G1 period and dissociated from the 'DNA-division cycle'. This phenomenon makes an interesting contribution to the old knowledge of a stepwise G1 prolongation during early embryogenesis in yielding a mechanism by which the cell can alter the ratio of nucleus to cytoplasm prior to the onset of gene expression.  相似文献   

2.
Cell Growth and Cell Division: Dissociated and Random Initiated?   总被引:2,自引:0,他引:2  
Abstract. The 'random transition probability' cekycle models have so far failed to convincingly link the transition events with phenomena describable by biochemical methods. the study presented was carried out on the F9 and PCC3 N/1 embryonal carcinoma (EC) cell lines. We now report an extended analysis of the two-random transition probability (TP) model and preliminary results are presented showing that the deterministic L period in that model can be regarded as reflecting the 'cell-growth cycle'. Evidence is presented that suggests that the 'cell-growth cycle' is a supramitotic deterministic phase—i.e. starting in one cell cycle and being completed in the next following G1 period and dissociated from the 'DNA-division cycle'. This phenomenon makes an interesting contribution to the old knowledge of a stepwise G1 prolongation during early embryogenesis in yielding a mechanism by which the cell can alter the ratio of nucleus to cytoplasm prior to the onset of gene expression.  相似文献   

3.
The metabolism of glycosphingolipids is strictly regulated during the mitotic cell cycle. Before the G1-to-S transition, the ceramide and glucosylceramide concentration is elevated. Ceramide induces apoptosis synergistically with the pro-apoptotic protein prostate apoptosis response 4 (PAR-4) that may be asymmetrically inherited during cell division. Only one daughter cell dies shortly after mitosis, a mechanism we suggested to regulate the number of neural stem cells during embryonic development. The progeny cells, however, may protect themselves by converting ceramide to glucosylceramide and other glycosphingolipids. In particular, complex gangliosides have been found to sustain cell survival and differentiation. The cell cycle may thus be a turning point for (glyco)sphingolipid metabolism and explain rapid changes of the sphingolipid composition in cells that undergo mitotic cell-fate decisions. In the proposed model termed "Shiva cycle", progression through the cell cycle, differentiation, or apoptosis may rely on a delicate balance of (glyco)sphingolipid second messengers that modulate the retinoblastoma-dependent G1-to-S transition or caspase-dependent G1-to-apoptosis program. Ceramide-induced cell cycle delay at G0/G1 is either followed by ceramide-induced apoptosis or by conversion of ceramide to glucosylceramide, a proposed key regulatory rheostat that rescues cells from re-entry into a life/death decision at G1-to-S. We propose a mechanistic model for sphingolpid-induced protein scaffolds ("slip") that regulate cell-fate decisions and will discuss the biological consequences and pharmacological potential of manipulating the (glyco)sphingolipid-dependent cell fate program in cancer and stem cells.  相似文献   

4.
Flow cytofluorimetric measurement of incorporated bromodeoxyuridine, using a double-stained cell population, allows the determination of the distribution of cells along the cell cycle. We have developed a simple computer program for the direct treatment of 64 x 64 channel histograms. This analysis appears to provide interesting data about the distribution of cells in the various phases of the cell cycle, namely the S phase. Two examples have been chosen to illustrate possible fields for the application of such a program. Comparison of two cell lines such as friend murine erythroleukemia cells (MELC) and fibroblasts FR3T3 cells has shown that this analysis can be used for cell-cycle characterization of a given cell line. The program also allows the differential analysis of cell distribution along the cell cycle as a function of a given parameter. This possibility has been applied to study the variation of cell-cycle parameters as a function of the time of induced differentiation of MELC and reveals changes in the distribution of the cells along the various phases of the cell cycle, namely in the S phase.  相似文献   

5.
Differentiation of human embryonic stem (ES) cells and embryonal carcinoma (EC) cells provides an in vitro model to study the process of neuronal differentiation. Retinoic acid (RA) is frequently used to promote neural differentiation of pluripotent cells under a wide variety of culture conditions. Through systematic comparison of differentiation conditions we demonstrate that RA induced neuronal differentiation of human ES and EC cells requires prolonged RA exposure and intercellular communication mediated by high cell density. These parameters are necessary for the up-regulation of neural gene expression (SOX2, PAX6 and NeuroD1) and the eventual appearance of neurons. Forced over-expression of neither SOX2 nor NEUROD1 was sufficient to overcome the density dependency of neuronal differentiation. Furthermore, inhibition of GSK3β activity blocked the ability of RA to direct cell differentiation along the neural lineage, suggesting a role for appropriately regulated WNT signalling. These data indicate that RA mediated neuronal differentiation of human EC and ES cell lines is not a cell autonomous program but comprises of a multi-staged program that requires intercellular input.  相似文献   

6.
The peripheral lamina of eukaryotic nuclei is composed of polypeptides called lamins that vary in number from one to four according to organism, cell type, and differentiated state of the cells. Early embryonic cells and stem cells of mammals generally possess only lamin B while lamins A and C appear later during differentiation. To study the role of the late appearance of lamins A and C in the differentiated phenotype, we have performed transfection of cDNAs coding for human lamins A or C into mouse embryonal carcinoma (EC) cell lines F9 and P19 lacking these two lamins. Transient transfections have shown that lamins A or C could be expressed, translocated to the peripheral lamina, and distributed into daughter cell nuclei after mitosis. These results demonstrated that EC cells devoid of lamins A and C nevertheless possessed the appropriate mechanisms for the localization and mitotic redistribution of exogenous lamins A and C.  相似文献   

7.
The development of cell lineages: A sequential model   总被引:2,自引:0,他引:2  
Abstract. The concept of cell lineage and the empirical characterization of specific lineages provide valuable insight into the problems of developmental biology. Of central interest is the decision-making process that results in the diversification of cell lines. Studies of the haemopoietic system, in which stem cells can be committed to one of at least six pathways of differentiation, have suggested that the restriction of differentiation potentials is a progressive and stochastic process. We have recently proposed an alternative model which hypothesizes that lineage potentials during haemopoiesis are expressed individually and in a predetermined sequence as progenitor cells mature. The model first arises from experimental studies which show that both normal myeloid progenitor cells and a human promyeloid cell line, which are able to differentiate towards either neutrophils or monocytes, express these potentials sequentially in culture. The close linear relationship between other haemopoietic progenitor cells is inferred from collective data from studies of bipotent progenitor cells and of haemopoietic proliferative disorders. If the development of haemopoietic cell lineages shows a tendency to follow a particular program, such a mechanism is likely to operate throughout development. In this paper we consider the evidence in favour of programmed events within progenitor cells implementing diversification, and the implications of predetermined and restricted pathways of embryonic development.  相似文献   

8.
Chang liver cells from exponentially growing suspension cultures have been separated by sedimentation at unit gravity. Determinations of the protein content per cell showed that the fractionation procedure resulted in good separation of cells of different size. On the other hand, the DNA content of individual cells from the fractions, as determined cytofluorimetrically, indicated considerable heterogeneity in the size of cells from the same stage of the division cycle. On the basis of earlier results on intermitotic growth and the variation in the length of the cell cycle in homogeneous cell populations, a mathematical model has been constructed and tested using a computer program. The present results on the size distribution of cells from the different stages of the mitotic cycle are consistent with a regeneration of size heterogeneity in each cell generation, as a result of the dispersion of intermitotic times. The variation in cell cycle times may be related to a probabilistic event in the G1 period. In the mathematical model it was necessary to include a mechanism by which the regeneration of abnormally large cells is prevented. The experimental data are compatible with a gradually increasing inhibition of growth in cells larger than a certain size (circa 400 pg protein per cell).  相似文献   

9.
We propose a stochastic version of a recently published, deterministic model of the molecular mechanism regulating the mitotic cell cycle of fission yeast, Schizosaccharomyces pombe. Stochasticity is introduced in two ways: (i) by considering the known asymmetry of cell division, which produces daughter cells of slightly different sizes; and (ii) by assuming that the nuclear volumes of the two newborn cells may also differ. In this model, the accumulation of cyclins in the nucleus is proportional to the ratio of cytoplasmic to nuclear volumes. We have simulated the cell-cycle statistics of populations of wild-type cells and of wee1(-) mutant cells. Our results are consistent with well known experimental observations.  相似文献   

10.
Embryonal carcinoma(EC) cells, the undifferentiated stem cells of teratocarcinomas, have many properties in common with pluripotent embryonic cells, and thus provide an excellent system for studying the early events involved in embryonic development and stem cell differentiation. We have isolated three novel mutants with temperature-sensitive(ts) cell growth that were able to differentiate at a non-permissive temperature for cell growth. These mutations affect the progression of the cell cycle, leading to the transient accumulation of cells in a specific phase, the S phase, of the cell cycle, which is likely to be the primary cause of stem cell differentiation of EC cells at non-permissive temperature. Isolation of these mutants strongly supports the notion that there is a close association between the inhibition of DNA synthesis and EC cell differentiation.  相似文献   

11.
In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding environment. The present version takes into consideration several additional energy-consuming biochemical pathways such as protein and DNA synthesis, the tuning of extracellular pH and of the cell membrane potential. The control of the cell cycle, which was previously modeled by means of ad hoc thresholds, has been directly addressed here by considering checkpoints from proteins that act as targets for phosphorylation on multiple sites. As simulated cells grow, they can now modify the chemical composition of the surrounding environment which in turn acts as a feedback mechanism to tune cell metabolism and hence cell proliferation: in this way we obtain growth curves that match quite well those observed in vitro with human leukemia cell lines. The model is strongly constrained and returns results that can be directly compared with actual experiments, because it uses parameter values in narrow ranges estimated from experimental data, and in perspective we hope to utilize it to develop in silico studies of the growth of very large tumor cell populations (10(6) cells or more) and to support experimental research. In particular, the program is used here to make predictions on the behavior of cells grown in a glucose-poor medium: these predictions are confirmed by experimental observation.  相似文献   

12.
Embryonic carcinoma (EC) cells, which are malignant stem cells of teratocarcinoma, have numerous morphological and biochemical properties in common with pluripotent stem cells such as embryonic stem (ES) cells. However, three EC cell lines (F9, P19 and PCC3) show different developmental potential and self‐renewal capacity from those of ES cells. All three EC cell lines maintain self‐renewal capacity in serum containing medium without Leukemia Inhibitory factor (LIF) or feeder layer, and show limited differentiation capacity into restricted lineage and cell types. To reveal the underlying mechanism of these characteristics, we took the approach of characterizing extrinsic factors derived from EC cells on the self‐renewal capacity and pluripotency of mouse ES cells. Here we demonstrate that EC cell lines F9 and P19 produce factor(s) maintaining the undifferentiated state of mouse ES cells via an unidentified signal pathway, while P19 and PCC3 cells produce self‐renewal factors of ES cells other than LIF that were able to activate the STAT3 signal; however, inhibition of STAT3 activation with Janus kinase inhibitor shows only partial impairment on the maintenance of the undifferentiated state of ES cells. Thus, these factors present in EC cells‐derived conditioned medium may be responsible for the self‐renewal capacity of EC and ES cells independently of LIF signaling.  相似文献   

13.
Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multicellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs--setae (macrochaetae)--of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Setae located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells--offspring of the only sensory organ precursor cell (SOPC), which differentiates from the imaginal wing disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOPC is an asymmetric division process. In this summary, experimental data on genes and their products controlling asymmetric division of SOPC and daughter cells, and also the specialization of the latter, have been systemized. The basic mechanisms which determine the time cells enter into asymmetric mitosis and which provides the structural characteristics of the asymmetric division process--the polar distribution of protein determinants Numb and Neuralized--the orientation of the mitotic spindle in relation to these determinants, and the uneven segregation of the determinants into the daughter cells that determines the direction of their development have been discussed.  相似文献   

14.
The relationship between the two subcycles 'the cell-growth cycle' (CGC) and the 'DNA-division cycle' (DDC) were examined in the pluripotent embryonal carcinoma cell line PCC3 N/I. This line shows intraclonal bimodal-like heterogeneity in growth rate. A combined protein (mass) and DNA staining method was used to evaluate the relationship between DDC and CGC at various stages in the cell cycle. The results revealed dissociation of the two subcycles and the mass distributions at certain points in the cell cycle reflected the bimodality reported by us for intermitotic time (IDT) distribution. The results were applied to a model called 'The Two-subcycles Cell Cycle Model' (TSCM). This model predicts that the period of DDC (Pre-S+S-G2-M) is fairly constant, while the CGC varies, being the main cause of the growth heterogeneity observed in this line. A point of growth rate regulation (PGRR) in G1 was thought to coincide with the start of CGC. These results reveal a mechanism by which the nucleo-cytoplasmic ratio of the cells can change from one cell cycle to the next.  相似文献   

15.
Weng W  Sukowati EW  Sheng G 《PloS one》2007,2(11):e1228
Hemangioblasts are bi-potential precursors for blood and endothelial cells (BCs and ECs). Existence of the hemangioblast in vivo by its strict definition, i.e. a clonal precursor giving rise to these two cell types after division, is still debated. Using a combination of mitotic figure analysis, cell labeling and long-term cell tracing, we show that, in chicken, cell division does not play a major role during the entire ventral mesoderm differentiation process after gastrulation. One eighth of cells do undergo at least one round of division, but mainly give rise to daughter cells contributing to the same lineage. Approximately 7% of the dividing cells that contribute to either the BC or EC lineage meet the criteria of true hemangioblasts, with one daughter cell becoming a BC and the other an EC. Our data suggest that hemangioblast-type generation of BC/EC occurs, but is not used as a major mechanism during early chicken development. It remains unclear, however, whether hemangioblast-like progenitor cells play a more prominent role in later development.  相似文献   

16.
Quantitative treatment of multiparametric determination on cells using flow cytofluorometry was made possible by the development of a computer program that allows the relative quantification of a specific protein as a function of the position of cells during the cell cycle. This type of analysis provides interesting information about the distribution of a given protein throughout the cell cycle. Four examples showing the distribution of specific proteins illustrate such a quantification during the cell cycle in two different cell lines. The program also allows for the handling of a series of histograms obtained by the analysis of protein distribution as a function of DNA content in relation to a third parameter. To illustrate possible applications for this program, the evolution of the distribution of two proteins, the oncoprotein p53 and the histone H1(0), during the induced differentiation of murine erythroleukemia cells has been studied.  相似文献   

17.
Size control models of Saccharomyces cerevisiae cell proliferation.   总被引:6,自引:2,他引:4       下载免费PDF全文
By using time-lapse photomicroscopy, the individual cycle times and sizes at bud emergence were measured for a population of saccharomyces cerevisiae cells growing exponentially under balanced growth conditions in a specially constructed filming slide. There was extensive variability in both parameters for daughter and parent cells. The data on 162 pairs of siblings were analyzed for agreement with the predictions of the transition probability hypothesis and the critical-size hypothesis of yeast cell proliferation and also with a model incorporating both of these hypotheses in tandem. None of the models accounted for all of the experimental data, but two models did give good agreement to all of the data. The wobbly tandem model proposes that cells need to attain a critical size, which is very variable, enabling them to enter a start state from which they exit with first order kinetics. The sloppy size control model suggests that cells have an increasing probability per unit time of traversing start as they increase in size, reaching a high plateau value which is less than one. Both models predict that the kinetics of entry into the cell division sequence will strongly depend on variability in birth size and thus will be quite different for daughters and parents of the asymmetrically dividing yeast cells. Mechanisms underlying these models are discussed.  相似文献   

18.
选用人类胚胎干细胞系和由人类胚胎干细胞系分化来的神经干细胞系为研究对象,分析组蛋白修饰对胚胎干细胞分化过程的调控作用。得到了两种细胞系差异表达基因转录起始位点侧翼区域内八种组蛋白修饰的分布模式,以及组蛋白修饰功能簇。研究表明在两类细胞系中,八种组蛋白修饰谱分布模式一致,且呈现两种分布类型; H3K27ac,H3K4me3和H3K9ac组成的功能簇是保守的;H3K27me3,H3K36me3和H3K79me1组成的功能簇以及H3K9me3和H3K27me3组成的功能簇在胚胎干细胞向神经干细胞分化的过程中消失。结果揭示了组蛋白修饰对胚胎干细胞系向神经干细胞系分化过程的部分调控机制,为该分化过程分子调控机制的研究提供部分重要的理论基础。  相似文献   

19.
Starvation arrests cultured mammalian cells in the G(1) restriction point of the cell cycle, whereas cancer cells generally lose the regulatory control of the cell cycle. Human lymphocytes, infected with Epstein-Barr virus (EBV), also lose their cell cycle control and produce immortal lymphoblastoid cell lines. We show that during starvation, EBV-lymphoblasts override the cell cycle arrest in the G(1) restriction point and continue cell division. Simultaneously, starvation activates apoptosis in an approximately half of the daughter cells in each cell generation. Continuos cell division and partial removal of cells by apoptosis results in stabilization of viable cell numbers, where a majority of viable cells are in the G(1) phase of the cell cycle. In contrast to starvation, anticancer drug etoposide activates apoptosis indiscriminately in all EBV-lymphoblasts and convertes all the viable cells into apoptotic. We conclude that the removal of surplus cells by apoptosis may represent a survival mechanism of transformed (i.e., cancer) cell population in nutrient restricted conditions, whereas nontransformed mammalian cells are arrested in the G(1) restriction point of the cell cycle.  相似文献   

20.
Several subclones of the human embryonal carcinoma (EC) cell line Tera-2 can be induced to differentiate in monolayer culture by retinoic acid (RA) to a flattened cell type with reduced growth rate. Using a method based on the transition probability model, we have analysed changes in cell cycle kinetics of Tera-2 cells during the differentiation process. Growth inhibition was shown to occur without a lag period and to be partly due to an increase in the duration of the S-phase, but with a relatively greater contribution from an increase in the duration of G1-phase. Since the fraction of the cell population in the G1-phase then doubled, cells accumulated in this part of the cycle. In contrast, the reduced proliferation rate of two murine EC cell lines, PC13 and P19, treated with RA occurs after a lag period of about two cell cycles and is mainly attributable to an increase in the duration of the S-phase. The results illustrate a differential response of human and murine EC cells to growth regulation by RA and again emphasize that although the stem cells of murine teratocarcinomas may provide a useful model, they are not identical to their human counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号