首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deregulation of the ubiquitin-protein ligase E6AP contributes to the development of the Angelman syndrome and to cervical carcinogenesis suggesting that the activity of E6AP needs to be under tight control. However, how E6AP activity is regulated at the post-translational level under non-pathologic conditions is poorly understood. In this study, we report that the giant protein HERC2, which is like E6AP a member of the HECT family of ubiquitin-protein ligases, binds to E6AP. The interaction is mediated by the RCC1-like domain 2 of HERC2 and a region spanning amino acid residues 150-200 of E6AP. Furthermore, we provide evidence that HERC2 stimulates the ubiquitin-protein ligase activity of E6AP in vitro and within cells and that this stimulatory effect does not depend on the ubiquitin-protein ligase activity of HERC2. Thus, the data obtained indicate that HERC2 acts as a regulator of E6AP.  相似文献   

2.
Cullin RING ligases (CRLs), the most prolific class of ubiquitin ligase enzymes, are multimeric complexes that regulate a wide range of cellular processes. CRL activity is regulated by CAND1 (Cullin-associated Nedd8-dissociated protein 1), an inhibitor that promotes the dissociation of substrate receptor components from the CRL. We demonstrate here that COMMD1 (copper metabolism MURR1 domain-containing 1), a factor previously found to promote ubiquitination of various substrates, regulates CRL activation by antagonizing CAND1 binding. We show that COMMD1 interacts with multiple Cullins, that the COMMD1-Cul2 complex cannot bind CAND1, and that, conversely, COMMD1 can actively displace CAND1 from CRLs. These findings highlight a novel mechanism of CRL activation and suggest that CRL regulation may underlie the pleiotropic activities of COMMD1.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4DCAF1). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4DCAF1 and CRL4DCAF1-Vpr E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4DCAF1 E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.  相似文献   

4.
SCCRO/DCUN1D1/DCN1 (squamous cell carcinoma-related oncogene/defective in cullin neddylation 1 domain containing 1/defective in cullin neddylation) serves as an accessory E3 in neddylation by binding to cullin and Ubc12 to allow efficient transfer of Nedd8. In this work we show that SCCRO has broader, pleiotropic effects that are essential for cullin neddylation in vivo. Reduced primary nuclear localization of Cul1 accompanying decreased neddylation and proliferation in SCCRO(-/-) mouse embryonic fibroblasts led us to investigate whether compartmentalization plays a regulatory role. Decreased nuclear localization, neddylation, and defective proliferation in SCCRO(-/-) mouse embryonic fibroblasts were rescued by transgenic expression of SCCRO. Expression of reciprocal SCCRO and Cul1-binding mutants confirmed the requirement for SCCRO in nuclear translocation and neddylation of cullins in vivo. Nuclear translocation of Cul1 by tagging with a nuclear localization sequence allowed neddylation independent of SCCRO, but at a lower level. We found that in the nucleus, SCCRO enhances recruitment of Ubc12 to Cul1 to promote neddylation. These findings suggest that SCCRO has an essential role in neddylation in vivo involving nuclear localization of neddylation components and recruitment and proper positioning of Ubc12.  相似文献   

5.
BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCFFBXO44) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCFFBXO44 reduces BRCA1 protein level. Taken together, our work strongly suggests that SCFFBXO44 is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCFFBXO44-mediated BRCA1 degradation might contribute to sporadic breast tumor development.  相似文献   

6.
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1.  相似文献   

7.
Protein ubiquitination is a key regulatory process essential to life at a cellular level; significant efforts have been made to identify ubiquitinated proteins through proteomics studies, but the level of success has not reached that of heavily studied post-translational modifications, such as phosphorylation. HRD1, an E3 ubiquitin ligase, has been implicated in rheumatoid arthritis, but no disease-relevant substrates have been identified. To identify these substrates, we have taken both peptide and protein level approaches to enrich for ubiquitinated proteins in the presence and absence of HRD1. At the protein level, a two-step strategy was taken using cells expressing His(6)-tagged ubiquitin, enriching proteins first based on their ubiquitination and second based on the His tag with protein identification by LC-MS/MS. Application of this method resulted in identification and quantification of more than 400 ubiquitinated proteins, a fraction of which were found to be sensitive to HRD1 and were therefore deemed candidate substrates. In a second approach, ubiquitinated peptides were enriched after tryptic digestion by peptide immunoprecipitation using an antibody specific for the diglycine-labeled internal lysine residue indicative of protein ubiquitination, with peptides and ubiquitination sites identified by LC-MS/MS. Peptide immunoprecipitation resulted in identification of over 1800 ubiquitinated peptides on over 900 proteins in each study, with several proteins emerging as sensitive to HRD1 levels. Notably, significant overlap exists between the HRD1 substrates identified by the protein-based and the peptide-based strategies, with clear cross-validation apparent both qualitatively and quantitatively, demonstrating the effectiveness of both strategies and furthering our understanding of HRD1 biology.  相似文献   

8.
Guo X  Shen S  Song S  He S  Cui Y  Xing G  Wang J  Yin Y  Fan L  He F  Zhang L 《The Journal of biological chemistry》2011,286(20):18037-18047
The HECT-type ubiquitin ligase (E3) Smad ubiquitination regulatory factor 1 (Smurf1) targets various substrates, including Smad1/5, RhoA, Prickle 1, MEKK2, and JunB for degradation and thereby regulates adult bone formation and embryonic development. Here, we identify the endoplasmic reticulum (ER)-localized Wolfram syndrome protein (WFS1) as a specific degradation substrate of Smurf1. Mutations in the WFS1 gene cause Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy. WFS1 negatively regulates the ER stress response, and WFS1 deficiency in mice increases ER stress and triggers apoptosis. We show that Smurf1 interacts with WFS1 at the ER and promotes the ubiquitination and proteasomal degradation of WFS1. A C-terminal luminal region in WFS1, including residues 667-700, is involved in this degradation. Wild-type WFS1 as well as a subset of WFS1 mutants that include this degron region are susceptible to Smurf1-mediated degradation. By contrast, pathophysiological deletion mutants of WFS1 lacking the degron, such as W648X, Y660X, and Q667X, are resistant to degradation by Smurf1. Depletion of Smurf1 by RNA interference results in increased WFS1 and decreased ATF6α levels. Furthermore, we show that ER stress induces Smurf1 degradation and WFS1 up-regulation. These findings reveal for the first time that Smurf1 targets an ER-localized protein for degradation and that Smurf1 is regulated by ER stress.  相似文献   

9.
10.
Tribbles homolog 2 (TRIB2) is critical for both solid and non-solid malignancies. Recently, TRIB2 was identified as a liver cancer-specific Wnt/β-catenin signaling downstream target and is functionally important for liver cancer cell survival and transformation. TRIB2 functions as a protein that interacts with E3 ubiquitin ligases and thereby modulates protein stability of downstream effectors. However, the regulation underlying TRIB2 protein stability per se has not yet been reported. In this study, we found that TRIB2 was up-regulated and exhibited high stability in liver cancer cells compared with other cells. We performed a structure-function analysis of TRIB2 and identified a domain (amino acids 1–5) at the N terminus that interacted with the E3 ubiquitin ligase Smurf1 and was critical for protein stability. Deletion of this domain extended TRIB2 half-life time accompanied with a more significant malignant property compared with wild type TRIB2. Furthermore, Smurf1-mediated ubiquitination required phosphorylation of TRIB2 by p70 S6 kinase (p70S6K) via another domain (amino acids 69–85) that is also essential for correct TRIB2 subcellular localization. Mutation of Ser-83 diminished p70S6K-induced phosphorylation of TRIB2. Moreover, the high stability of TRIB2 may be due to the fact that both p70S6K and Smurf1 were down-regulated and negatively correlated with TRIB2 expression in both liver cancer tissues and established liver cancer cell lines. Taken together, impaired phosphorylation and ubiquitination by p70S6K and Smurf1 increase the protein stability of TRIB2 in liver cancer and thus may be helpful in the development of diagnosis and treatment strategies against this malignant disease.  相似文献   

11.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates inositol-requiring protein-1 (IRE1), among other ER-associated signaling proteins of the unfolded protein response (UPR) in mammalian cells. IRE1 signaling becomes attenuated under prolonged ER stress. The mechanisms by which this occurs are not well understood. An ER resident protein, Bax inhibitor-1 (BI-1), interacts with IRE1 and directly inhibits IRE1 activity. However, little is known about regulation of the BI-1 protein. We show here that bifunctional apoptosis regulator (BAR) functions as an ER-associated RING-type E3 ligase, interacts with BI-1, and promotes proteasomal degradation of BI-1. Overexpression of BAR reduced BI-1 protein levels in a RING-dependent manner. Conversely, knockdown of endogenous BAR increased BI-1 protein levels and enhanced inhibition of IRE1 signaling during ER stress. We also found that the levels of endogenous BAR were reduced under prolonged ER stress. Our findings suggest that post-translational regulation of the BI-1 protein by E3 ligase BAR contributes to the dynamic control of IRE1 signaling during ER stress.  相似文献   

12.
The accurate replication of genetic information is critical to maintaining chromosomal integrity. Cdc6 functions in the assembly of pre-replicative complexes and is specifically required to load the Mcm2-7 replicative helicase complex at replication origins. Cdc6 is targeted for protein degradation by multiple mechanisms in Saccharomyces cerevisiae, although only a single pathway and E3 ubiquitin ligase for Cdc6 has been identified, the SCFCdc4 (Skp1/Cdc53/F-box protein) complex. Notably, Cdc6 is unstable during the G1 phase of the cell cycle, but the ubiquitination pathway has not been previously identified. Using a genetic approach, we identified two additional E3 ubiquitin ligase components required for Cdc6 degradation, the F-box protein Dia2 and the Hect domain E3 Tom1. Both Dia2 and Tom1 control Cdc6 turnover during G1 phase of the cell cycle and act separately from SCFCdc4. Ubiquitination of Cdc6 is significantly reduced in dia2Δ and tom1Δ cells. Tom1 and Dia2 each independently immunoprecipitate Cdc6, binding to a C-terminal region of the protein. Tom1 and Dia2 cannot compensate for each other in Cdc6 degradation. Cdc6 and Mcm4 chromatin association is aberrant in tom1Δ and dia2Δ cells in G1 phase. Together, these results present evidence for a novel degradation pathway that controls Cdc6 turnover in G1 that may regulate pre-replicative complex assembly.  相似文献   

13.
The related RING domain proteins MdmX and Mdm2 are best known for their role as negative regulators of the tumor suppressor p53. However, although Mdm2 functions as a ubiquitin ligase for p53, MdmX does not have appreciable ubiquitin ligase activity. In this study, we performed a mutational analysis of the RING domain of MdmX, and we identified two distinct regions that, when replaced by the respective regions of Mdm2, turn MdmX into an active ubiquitin ligase for p53. Mdm2 and MdmX form homodimers as well as heterodimers with each other. One of the regions identified localizes to the dimer interface indicating that subtle conformational changes in this region either affect dimer stability and/or the interaction with the ubiquitin-conjugating enzyme UbcH5b. The second region contains the cryptic nucleolar localization signal of Mdm2 but is also assumed to be involved in the interaction with UbcH5b. Here, we show that this region has a significant impact on the ability of respective MdmX mutants to functionally interact with UbcH5b in vitro supporting the notion that this region serves two distinct functional purposes, nucleolar localization and ubiquitin ligase activity. Finally, evidence is provided to suggest that the RING domain of Mdm2 not only binds to UbcH5b but also acts as an allosteric activator of UbcH5b.  相似文献   

14.
Ubiquitin pathway E3 ligases are an important component conferring specificity and regulation in ubiquitin attachment to substrate proteins. The Arabidopsis thaliana RING (Really Interesting New Gene) domain-containing proteins BRIZ1 and BRIZ2 are essential for normal seed germination and post-germination growth. Loss of either BRIZ1 (At2g42160) or BRIZ2 (At2g26000) results in a severe phenotype. Heterozygous parents produce progeny that segregate 3:1 for wild-type:growth-arrested seedlings. Homozygous T-DNA insertion lines are recovered for BRIZ1 and BRIZ2 after introduction of a transgene containing the respective coding sequence, demonstrating that disruption of BRIZ1 or BRIZ2 in the T-DNA insertion lines is responsible for the observed phenotype. Both proteins have multiple predicted domains in addition to the RING domain as follows: a BRAP2 (BRCA1-Associated Protein 2), a ZnF UBP (Zinc Finger Ubiquitin Binding protein), and a coiled-coil domain. In vitro, both BRIZ1 and BRIZ2 are active as E3 ligases but only BRIZ2 binds ubiquitin. In vitro synthesized and purified recombinant BRIZ1 and BRIZ2 preferentially form hetero-oligomers rather than homo-oligomers, and the coiled-coil domain is necessary and sufficient for this interaction. BRIZ1 and BRIZ2 co-purify after expression in tobacco leaves, which also requires the coiled-coil domain. BRIZ1 and BRIZ2 coding regions with substitutions in the RING domain are inactive in vitro and, after introduction, fail to complement their respective mutant lines. In our current model, BRIZ1 and BRIZ2 together are required for formation of a functional ubiquitin E3 ligase in vivo, and this complex is required for germination and early seedling growth.  相似文献   

15.
16.
Many microbial pathogens deliver effector proteins via the type III secretion system into infected host cells. Elucidating the function of these effectors is essential for our understanding of pathogenesis. Here, we describe biochemical and structural characterization of an effector protein (NleL) from Escherichia coli O157:H7, a widespread pathogen causing severe foodborne diseases. We show that NleL functionally and structurally mimics eukaryotic HECT E3 ligases and catalyzes formation of unanchored polyubiquitin chains using Lys(6) and Lys(48) linkage. The catalytic cysteine residue forms a thioester intermediate with ubiquitin. The structure of NleL contains two domains, a β-helix domain formed by pentapeptide repeats and a bilobed catalytic domain reminiscent of the N- and C-lobe architecture of HECT E3s. Six structures of NleL observed in two crystal forms revealed a large range of different positions of the C-lobe relative to the N-lobe, indicating that the helix linking the two lobes is extremely flexible. Comparing the structure of NleL with that of the Salmonella homolog SopA showed that the orientation of the C-lobes differ by as much as 108°, suggesting that large movements of the C-lobe may be required to facilitate the transfer of ubiquitin from E2 to the substrate. These results provide critical knowledge toward understanding the molecular mechanism by which pathogens utilize the host ubiquitination system during infection.  相似文献   

17.
E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous cellular processes. The HECT class of E3 ubiquitin (Ub) ligases directly transfers Ub from bound E2 enzyme to a myriad of substrates. The catalytic domain of HECT Ub ligases has a bilobal architecture that separates the E2 binding region and catalytic site. An important question regarding HECT domain function is the control of ligase activity and specificity. Here we present a functional analysis of the HECT domain of the E3 ligase HUWE1 based on crystal structures and show that a single N-terminal helix significantly stabilizes the HECT domain. We observe that this element modulates HECT domain activity, as measured by self-ubiquitination induced in the absence of this helix, as distinct from its effects on Ub conjugation of substrate Mcl-1. Such subtle changes to the protein may be at the heart of the vast spectrum of substrate specificities displayed by HECT domain E3 ligases.  相似文献   

18.
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated to the cytosol and degraded by the proteasome via a process termed ER-associated degradation (ERAD). The precise mechanism of retrotranslocation is unclear. Here, we use several lumenal ERAD substrates targeted for degradation by the ubiquitin ligase HRD1 including SHH (sonic hedgehog) and NHK (null Hong Kong α1-antitrypsin) to study the geometry, organization, and regulation of the HRD1-containing ERAD machinery. We report a new HRD1-associated membrane protein named HERP2, which is homologous to the previously identified HRD1 partner HERP1. Despite sequence homology, HERP2 is constitutively expressed in cells, whereas HERP1 is highly induced by ER stress. We find that these proteins are required for efficient degradation of both glycosylated and nonglycosylated SHH proteins as well as NHK. In cells depleted of HERPs, SHH proteins are largely trapped inside the ER with a fraction of the stabilized SHH protein bound to the HRD1-SEL1L ligase complex. Ubiquitination of SHH is significantly attenuated in the absence of HERPs, suggesting a defect in retrotranslocation. Both HERP proteins interact with HRD1 through a region located in the cytosol. However, unlike its homolog in Saccharomyces cerevisiae, HERPs do not regulate HRD1 stability or oligomerization status. Instead, they help recruit DERL2 to the HRD1-SEL1L complex. Additionally, the UBL domain of HERP1 also seems to have a function independent of DERL2 recruitment in ERAD. Our studies have revealed a critical scaffolding function for mammalian HERP proteins that is required for forming an active retrotranslocation complex containing HRD1, SEL1L, and DERL2.  相似文献   

19.
Ufd2 is a U-box-containing ubiquitylation enzyme that promotes ubiquitin chain assembly on substrates. The physiological function of Ufd2 remains poorly understood. Here, we show that ubiquitylation and degradation of the cell cycle kinase Mps1, a known target of the anaphase-promoting complex E3, require Ufd2 enzyme. Yeast cells lacking UFD2 exhibit altered chromosome stability and several spindle-related phenotypes, expanding the biological function of Ufd2. We demonstrate that Ufd2-mediated Mps1 degradation is conserved in humans. Our results underscore the significance of Ufd2 in proteolysis and further suggest that Ufd2-like enzymes regulate far more substrates than previously envisioned.  相似文献   

20.
Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme found in all eukaryotes that catalyzes the removal of ubiquitin from specific target proteins. Here, we report that UbE2E1, an E2 ubiquitin conjugation enzyme with a unique N-terminal extension, is a novel USP7-interacting protein. USP7 forms a complex with UbE2E1 in vitro and in vivo through the ASTS USP7 binding motif within its N-terminal extension in an identical manner with other known USP7 binding proteins. We show that USP7 attenuates UbE2E1-mediated ubiquitination, an effect that requires the N-terminal ASTS sequence of UbE2E1 as well as the catalytic activity of USP7. Additionally, USP7 is critical in maintaining the steady state levels of UbE2E1 in cells. This study reveals a new cellular mechanism that couples the opposing activities of the ubiquitination machinery and a deubiquitinating enzyme to maintain and modulate the dynamic balance of the ubiquitin-proteasome system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号