首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radial artery (RA) is used as a spastic coronary bypass graft. This study was designed to investigate the mechanism of vasorelaxant effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole), a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO (diethylamine/nitric oxide), a NO-nucleophile adduct, on the human RA. RA segments (n = 25) were obtained from coronary artery bypass grafting patients and were divided into 3-4 mm vascular rings.Using the isolated tissue bath technique, the endothelium-independent vasodilatation function was tested in vitro by the addition of cumulative concentrations of YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) following vasocontraction by phenylephrine in the presence or absence of 10-5 mol/L ODQ (1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one), the selective sGC inhibitor, 10-7 mol/L iberiotoxin, a blocker of Ca2+-activated K+ channels, or 10-5 mol/L ODQ plus 10-7 mol/L iberiotoxin. We also evaluated the effect of YC-1 and DEA/NO on the cGMP levels in vascular rings obtained from human radial artery (n = 6 for each drug). YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) caused the concentration-dependent vasorelaxation in RA rings precontracted with phenylephrine (10-5 mol/L) (n = 20 for each drug). Pre-incubation of RA rings with ODQ, iberiotoxin, or ODQ plus iberiotoxin significantly inhibited the vasorelaxant effect of YC-1, but the inhibitor effect of ODQ plus iberiotoxin was significantly more than that of ODQ and iberiotoxin alone (p < 0.05). The vasorelaxant effect of DEA/NO almost completely abolished in the presence of ODQ and iberiotoxin plus ODQ, but did not significantly change in the presence of iberiotoxin alone (p > 0.05). The pEC50 value of DEA/NO was significantly lower than those for YC-1 (p < 0.01), with no change Emax values in RA rings. In addition, YC-1-stimulated RA rings showed more elevation in cGMP than that of DEA/NO (p < 0.05). These findings indicate that YC-1 is a more potent relaxant than DEA/NO in the human RA. The relaxant effects of YC-1 could be due to the stimulation of the sGC and Ca2+-sensitive K+channels, whereas the relaxant effects of DEA/NO could be completely due to the stimulation of the sGC. YC-1 and DEA/NO may be effective as vasodilator for the short-term treatment of perioperative spasm of coronary bypass grafts.  相似文献   

2.
Hydrogen peroxide (H(2)O(2)) is a proposed endothelium-derived hyperpolarizing factor and metabolic vasodilator of the coronary circulation, but its mechanisms of action on vascular smooth muscle remain unclear. Voltage-dependent K(+) (K(V)) channels sensitive to 4-aminopyridine (4-AP) contain redox-sensitive thiol groups and may mediate coronary vasodilation to H(2)O(2). This hypothesis was tested by studying the effect of H(2)O(2) on coronary blood flow, isometric tension of arteries, and arteriolar diameter in the presence of K(+) channel antagonists. Infusing H(2)O(2) into the left anterior descending artery of anesthetized dogs increased coronary blood flow in a dose-dependent manner. H(2)O(2) relaxed left circumflex rings contracted with 1 muM U46619, a thromboxane A(2) mimetic, and dilated coronary arterioles pressurized to 60 cmH(2)O. Denuding the endothelium of coronary arteries and arterioles did not affect the ability of H(2)O(2) to cause vasodilation, suggesting a direct smooth muscle mechanism. Arterial and arteriolar relaxation by H(2)O(2) was reversed by 1 mM dithiothreitol, a thiol reductant. H(2)O(2)-induced relaxation was abolished in rings contracted with 60 mM K(+) and by 10 mM tetraethylammonium, a nonselective inhibitor of K(+) channels, and 3 mM 4-AP. Dilation of arterioles by H(2)O(2) was antagonized by 0.3 mM 4-AP but not 100 nM iberiotoxin, an inhibitor of Ca(2+)-activated K(+) channels. H(2)O(2)-induced increases in coronary blood flow were abolished by 3 mM 4-AP. Our data indicate H(2)O(2) increases coronary blood flow by acting directly on vascular smooth muscle. Furthermore, we suggest 4-AP-sensitive K(+) channels, or regulating proteins, serve as redox-sensitive elements controlling coronary blood flow.  相似文献   

3.
The avian embryo provides a novel model for studying the ductus arteriosus (DA) during the transition from in ovo to ex ovo life. Here we examined the mechanisms regulating the vasoreactivity of the two morphologically distinct portions of the chicken DA (proximal and distal) in response to O(2). Oxygen-induced contraction is redox sensitive and reversed by the reducing agent dithiothreitol and the H(2)O(2) scavenger N-mercaptopropionylglycine. As in the mammalian DA, inhibiting mitochondrion-derived reactive oxygen species production with rotenone and antimycin A relaxed the O(2)-constricted DA. The contractile response to O(2) matures during hatching and is mimicked by the K(v) channel inhibitor 4-aminopyridine (4-AP) on day 19 and externally pipped (EP) embryos. Together, O(2) and 4-AP significantly increase DA tone above that observed with either alone. The O(2)-induced contraction is mediated by influx of extracellular Ca(2+) through l-type Ca(2+) and store-operated channels. Inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores play a minor role in the O(2)-induced contraction. The O(2)-induced contraction is mediated by the Rho kinase pathway, as fasudil and Y-27632 significantly relax the O(2) contracted DA. Prostaglandins E(2), F(2alpha), and D(2) produce significant contraction of the proximal DA. The O(2)-induced relaxation of the distal portion of the DA is mediated by an endothelial-derived nitric oxide/cGMP pathway. Both 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and endothelial cell removal inhibit O(2)-induced relaxation in the distal segment. Mechanisms regulating O(2)-induced contraction in chicken proximal DA are similar to those found in mammalian DA, making the chicken a useful model for studying development of this O(2)-sensitive vessel.  相似文献   

4.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

5.
Ca(2+)-activated K(+) channels (K(Ca)) and NO play a central role in the endothelium-dependent control of vasomotor tone. We evaluated the interaction of K(Ca) with NO production in isolated arterial mesenteric beds of the rat. In phenylephrine-contracted mesenteries, acetylcholine (ACh)-induced vasodilation was reduced by NO synthase (NOS) inhibition with N(ω)-nitro-L-arginine (L-NA), but in the presence of tetraethylammonium, L-NA did not further affect the response. In KCl-contracted mesenteries, the relaxation elicited by 100 nM ACh or 1 μM ionomycin was abolished by L-NA, tetraethylammonium, or simultaneous blockade of small-conductance K(Ca) (SK(Ca)) channels with apamin and intermediate-conductance K(Ca) (IK(Ca)) channels with triarylmethane-34 (TRAM-34). Apamin-TRAM-34 treatment also abolished 100 nM ACh-activated NO production, which was associated with an increase in superoxide formation. Endothelial cell Ca(2+) buffering with BAPTA elicited a similar increment in superoxide. Apamin-TRAM-34 treatment increased endothelial NOS phosphorylation at threonine 495 (P-eNOS(Thr495)). Blockade of NAD(P)H oxidase with apocynin or superoxide dismutation with PEG-SOD prevented the increment in superoxide and changes in P-eNOS(Thr495) observed during apamin and TRAM-34 application. Our results indicate that blockade of SK(Ca) and IK(Ca) activates NAD(P)H oxidase-dependent superoxide formation, which leads to inhibition of NO release through P-eNOS(Thr495). These findings disclose a novel mechanism involved in the control of NO production.  相似文献   

6.
AIMS: Although 5-hydroxytryptamine (5-HT) contracts airway smooth muscle in many mammalian species, in guinea pig and human airways 5-HT causes a contraction followed by relaxation. This study explored potential mechanisms involved in the relaxation induced by 5-HT. MAIN METHODS: Using organ baths, patch clamp, and intracellular Ca(2+) measurement techniques, the effect of 5-HT on guinea pig airway smooth muscle was studied. KEY FINDINGS: A wide range of 5-HT concentrations caused a biphasic response of tracheal rings. Response to 32 muM 5-HT was notably reduced by either tropisetron or methiothepin, and almost abolished by their combination. Incubation with 10 nM ketanserin significantly prevented the relaxing phase. Likewise, incubation with 100 nM charybdotoxin or 320 nM iberiotoxin and at less extent with 10 muM ouabain caused a significant reduction of the relaxing phase induced by 5-HT. Propranolol, L-NAME and 5-HT(1A), 5-HT(1B)/5-HT(1D) and 5-HT(2B) receptors antagonist did not modify this relaxation. Tracheas from sensitized animals displayed reduced relaxation as compared with controls. In tracheas precontracted with histamine, a concentration response curve to 5-HT (32, 100 and 320 muM) induced relaxation and this effect was abolished by charybdotoxin, iberiotoxin or ketanserin. In single myocytes, 5-HT in the presence of 3 mM 4-AP notably increased the K(+) currents (I(K(Ca))), and they were completely abolished by charybdotoxin, iberiotoxin or ketanserin. SIGNIFICANCE: During the relaxation induced by 5-HT two major mechanisms seem to be involved: stimulation of the Na(+)/K(+)-ATPase pump, and increasing activity of the high-conductance Ca(2+)-activated K(+) channels, probably via 5-HT(2A) receptors.  相似文献   

7.
H(2)S is endogenously generated in vascular smooth muscle cells. The signal transduction pathways involved in the vascular effects of H(2)S have been unclear and were investigated in the present study. H(2)S induced a concentration-dependent relaxation of rat aortic tissues that was not affected by vascular denervation. The vasorelaxant potency of H(2)S was attenuated by the removal of the endothelium. Similarly, the blockade of nitric oxide synthase or the coapplication of the Ca(2+)-dependent K(+) channel blockers apamin and charybdotoxin reduced the H(2)S-induced relaxation of the endothelium-intact aortic tissues. Sodium nitroprusside (SNP)-induced relaxation was completely abolished by either 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or NS- 2028, two soluble guanylate cyclase inhibitors. Instead of inhibition, ODQ and NS-2028 potentiated the H(2)S-induced vasorelaxation, which was suppressed by superoxide dismutase. The vasorelaxant effect of H(2)S was also significantly attenuated when Ca(2+)-free bath solution was used. Finally, pretreatment of aortic tissues with H(2)S reduced the relaxant response of vascular tissues to SNP. Our results demonstrate that the vascular effect of H(2)S is partially mediated by a functional endothelium and dependent on the extracellular calcium entry but independent of the activation of the cGMP pathway.  相似文献   

8.
Chronic hypoxia is associated with both blunted agonist-induced and myogenic vascular reactivity and is possibly due to an enhanced production of heme oxygenase (HO)-derived carbon monoxide (CO). However, the mechanism of endogenous CO-meditated vasodilation remains unclear. Isolated pressurized mesenteric arterioles from chronically hypoxic rats were administered the HO substrate heme-l-lysinate (HLL) in the presence or absence of iberiotoxin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), ryanodine, or free radical spin traps (N-tert-butyl-alpha-phenylnitrone and 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt). The effects of HLL administration on vascular smooth muscle (VSM) membrane potential were assessed in superior mesenteric artery strips in the presence and absence of zinc protoporphyrin IX or iberiotoxin. The vasodilatory responses to exogenous CO were assessed in the presence and absence of ODQ or iberiotoxin. HLL administration produced a dose-dependent vasodilatory response that was nearly eliminated in the presence of iberiotoxin. Neither ODQ, spin traps, nor ryanodine altered the vasodilatory response to HLL, although ODQ abolished the vasodilatory response to S-nitroso-N-acetyl-penicillamine. HLL administration produced a zinc protoporphyrin IX- and iberiotoxin-sensitive VSM cell hyperpolarization. Iberiotoxin and ODQ inhibited the vasodilatory response to exogenous CO. Thus the vasodilatory response to endogenous CO involves cGMP-independent activation of VSM large-conductance Ca2+-activated K+ channels and does not likely involve the formation of Ca2+ sparks emanating from ryanodine-sensitive stores.  相似文献   

9.
Carbon monoxide (CO) is known to increase cerebral blood flow, but the effect of CO on the vascular tone of large cerebral arteries is uncertain. We tested whether CO affects cerebral artery tone by measuring tension generated by ex vivo segments of dog basilar artery upon exposure to CO. In cerebral artery segments contracted with either KCl or prostaglandin F(2alpha), CO caused a concentration-related relaxation beginning with a concentration of 57 microM. Relaxation did not occur if CO was administered in the presence of bubbling carboxygen (95% O(2):5% CO(2)), which reduces greater than 99% of CO from the solution. Furthermore, the CO-induced relaxation of cerebral artery segments was reduced in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM)or the potassium channel blocker tetraethylammonium (TEA, 1 mM). Neither ODQ nor TEA completely eliminated the relaxation caused by CO and there was no additive effect if ODQ and TEA were administered together. These results suggest that cerebral arteries are directly relaxed by CO and that this relaxation depends upon the activation of guanylyl cyclase and the opening of potassium channels.  相似文献   

10.
In vitro microdialysis was used to investigate the mechanism of nitric oxide (NO) donor-induced changes in dopamine (DA) secretion from PC12 cells. Infusion of the NO-donor S-nitroso-N-acetylpenicillamine (SNAP, 1.0 mm) induced a long-lasting increase in DA and 3-methoxytyramine (3-MT) dialysate concentrations. SNAP-induced increases were inhibited either by pre-infusion of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4] oxadiazolo[4,3]quinoxalin-1-one (ODQ, 0.1 mm) or by Ca2+ omission. Ca2+ re-introduction restored SNAP effects. SNAP-induced increases in DA + 3-MT were unaffected by co-infusion of the l-type Ca2+ channel inhibitor nifedipine. The NO-donor (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3, 1.0 mm) induced a short-lasting decrease in dialysate DA + 3-MT. Ascorbic acid (0.2 mm) co-infusion allowed NOR-3 to increase dialysate DA + 3-MT. ODQ pre-infusion inhibited NOR-3 + ascorbic acid-induced DA + 3-MT increases. Infusion of high K+ (75 mm) induced a 2.5-fold increase in dialysate DA + 3-MT. The increase was abolished by NOR-3 co-infusion. Conversely, co-infusion of ascorbic acid (0.2 mm) with NOR-3 + high K+ restored high K+ effects. Co-infusion of nifedipine inhibited high K+-induced DA + 3-MT increases. These results suggest that activation of the NO/sGC/cyclic GMP pathway may be the underlying mechanism of extracellular Ca2+-dependent effects of exogenous NO on DA secretion from PC12 cells. Extracellular Ca2+ entry may occur through nifedipine-insensitive channels. NO effects and DA concentrations in dialysates largely depend on both the timing of NO generation and the extracellular environment in which NO is generated.  相似文献   

11.
Vasorelaxation mediated by peroxynitrite (ONOO-) and 3-morpholinosydnonimine (SIN-1) were investigated in isolated bovine intramammary arteries. Both ONOO- and SIN-1 relaxed U 46619-precontracted rings in a dose-dependent, endothelium-independent manner. Pretreatment with an adenylyl cyclase inhibitor, SQ 22536 [(9-tetrahydro-2-furyl)adenine], resulted in an enhanced ONOO--mediated relaxation, but did not modulate the response to SIN-1. ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a potent and selective inhibitor of soluble guanylyl cyclase (sGC), did not significantly affect relaxant actions of ONOO-, but ODQ markedly attenuated SIN-1-elicited relaxation with a rightward shift in the dose-response curve and an unaltered maximal response. In the presence of carboxy-PTIO (2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide), a putative nitric oxide scavenger and ONOO- inactivator, the relaxant response to ONOO- was abolished, while relaxant actions of SIN-1 appeared to be unaffected. The results reveal a difference between ONOO- and SIN-1-mediated relaxation with regards to the role of the sGC and suggest that ONOO--evoked relaxation may not be associated with sGC activity, but rather depends on an sGC-independent mechanism triggered by ONOO- and/or NO itself. It also re-emphasizes that SIN-1 induces a vasorelaxant response, in part, via stimulation of sGC.  相似文献   

12.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2008,82(1-2):91-98
1, 5-Dihydroxy-2, 3-dimethoxy-xanthone (HM-5) is one of the naturally-occurring xanthones of a Tibetan medicinal herb Halenia elliptica. Recently, it has been shown that HM-5 is one of the phase I metabolites of 1-hydroxy-2, 3, 5-trimethoxy-xanthone (HM-1), the major active component of H. elliptica with potent vasorelaxant actions. This study investigated the vasorelaxant effect of HM-5 and its mechanism(s). HM-5 (0.35-21.9 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 4.40+/-1.08 microM. Unlike HM-1, the effect of HM-5 was endothelial-independent such that removal of the endothelium did not affect its vasodilator potency. Nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME, 100 microM), the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM) did not affect the vasodilatory effects of HM-5, thus confirming the non-involvement of endothelium related mechanisms. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-5 was inhibited by a potassium channel blocker, TEA (10 mM), and 4-aminopyridine (4-AP, a K(v) blocker; 1 mM) but not by other K+ channel blockers such as iberiotoxin (100 nM), barium chloride (100 microM) and glibenclamide (10 microM). The involvement of Ca2+ channel was studied in artery rings pre-incubated with Ca2+-free buffer (intact endothelium or endothelium-denuded) and primed with 1 microM 5-HT or 60 mM KCl prior to the addition of CaCl2 to elicit contraction. In the 5-HT-primed preparations, HM-5 (34.7 microM) significantly inhibited the CaCl(2)-induced vasoconstriction (89.9% inhibition in intact endothelium artery rings; 83.3% inhibition in endothelium-denuded rings). In the KCl-primed preparations, HM-5 (34.7 microM) produced a 34% inhibition in endothelium-denuded rings. The same concentration of HM-5 inhibited (by 62.3%) the contractile response to 10 microM phorbol 12, 13-diacetate (PDA), a protein kinase C activator, in Ca2+-free solutions. Taken together, this study showed that the mechanisms of the vasorelaxant effects of HM-5 were distinctly different from those of its parent drug HM-1. The vasorelaxant effect of HM-5 was mediated through opening of potassium channel (4-AP) and altering intracellular calcium by partial inhibition of Ca2+ influx through L-type voltage-operated Ca2+ channels and intracellular Ca2+ stores.  相似文献   

13.
Estradiol-17beta relaxes rabbit coronary artery rings via large conductance Ca2+-activated K+-channels (K(Ca)). Genistein and daidzein are plant-derived estrogen-like compounds. The aim of the present study was to investigate whether potassium channels participate in the genistein- and daidzein-induced arterial relaxation like they do in the case of estradiol-17beta. Endothelium-denuded superior mesenteric arterial rings from non-pregnant Wistar female rats were used. At a concentration of 10 microM, estradiol-17beta, genistein and daidzein relaxed noradrenaline precontracted arterial rings, (58 +/- 4%, 45 +/- 5% and 31 +/- 3%, respectively; (n=6-8)). Genistein- and daidzein-induced relaxations were inhibited both by iberiotoxin (1-10 nM) and charybdotoxin (30 nM), the antagonists of large conductance Ca2+-activated K+-channels (K(Ca)). Estradiol-17beta-induced relaxation was reduced by iberiotoxin (30 nM). Estradiol-17beta- and daidzein-induced relaxations were also decreased by apamin (0.1-0.3 microM), an antagonist of small conductance Ca2+-activated K+-channels. The antagonists of voltage-dependent K+-channels (K(V)) (4-aminopyridine), ATP-sensitive K+-channels (K(ATP)) (glibenclamide), or inward rectifier K+-channels (KIR) (barium) had no effect on the relaxation responses of any of the compounds studied. Estrogen receptor antagonist tamoxifen did not inhibit the relaxations. In conclusion, in the noradrenaline precontracted rat mesenteric arteries, the relaxations caused by estradiol-17beta, genistein and daidzein were antagonized by large and small conductance K(Ca)-channel inhibitors, suggesting the role of these channels as one of the relaxation mechanisms.  相似文献   

14.
The aim of this study was to investigate, in mouse duodenum, the role of nitric oxide (NO) in the relaxation of longitudinal muscle evoked by nerve activation and the coupled action mechanism. Electrical field stimulation (EFS; 0.5 ms, 10-s train duration, supramaximal voltage, at various frequencies) under nonadrenergic noncholinergic conditions evoked muscular relaxation occasionally followed, at the higher stimulus frequencies, by rebound contractions. Inhibition of the synthesis of NO by N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM) virtually abolished the evoked relaxation. The relaxation was reduced also by apamin (0.1 microM) and by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a guanylyl cyclase inhibitor. The coadministration of apamin and ODQ produced additive effects on the responses to EFS. Sodium nitroprusside (0.1-100 microM) produced a concentration-dependent reduction of the phasic spontaneous activity and at the highest dose used suppressed phasic activity and induced muscular relaxation. These effects were tetrodotoxin and L-NAME resistant and were antagonized both by apamin and by ODQ. 8-Bromoguanosine 3',5'-cyclic monophosphate (0.1-100 microM) reduced in a concentration-dependent manner the spontaneous mechanical activity and at 100 microM suppressed the phasic activity and induced muscular relaxation, not antagonized by apamin. This study indicates that NO is the primary transmitter released by inhibitory nerves supplying the longitudinal muscle of mouse duodenum and that guanylate cyclase stimulation and opening of Ca(2+)-dependent K(+) channels are independent mechanisms working in parallel to mediate NO action.  相似文献   

15.
The effects of authentic nitric oxide (NO, 10(-6) M) and NO-donors such as sodium nitroprusside (SNP, 10(-5) M) and glyceryl trinitrate (GTN, 10(-4) M) on contractile force and free intracellular calcium level ([Ca2+]i) were studied on precontracted with high potassium chloride (KCl, 70 mM) isolated rings of rat tail artery. The sensitivity of contractile myofilaments to Ca2+ was measured using chemically permeabilized (alpha-toxin, beta-escin, Triton X-100) vascular rings. [Ca2+]i and contractile activity were measured simultaneously. The relationship of [Ca2+]i and tension developed was studied in endothelium-denuded rings and controlled calcium response was evaluated in both endothelium-denuded and permeabilized vascular rings. Both authentic NO and NO-donors decreased [Ca2+]i and high potassium-induced tension with a different time course. Inhibitor of soluble guanylyl cyclase (sGC) LY83583 (10(-5) M) did not affect SNP-induced relaxation whereas the other sGC inhibitor ODQ (10(-6) M) attenuated SNP-induced relaxation. Both inhibitors had no effect on NO- and SNP-induced reduction in [Ca2+]i. On the contrary, GTN induced neither relaxation nor decrease in [Ca2+]i on application of both LY83583 and ODQ. Tail artery rings permeabilized with alpha-toxin, beta-escin, but not with Triton X-100 were relaxed by authentic NO and NO-donors, but to a less extent than non-permeabilized rings. Dithioerythritol (DTE, 5 x 10(-3) M) that maintains sulfhydryl (SH) groups in reduced state preventing their nitrosylation attenuated NO-induced relaxation in both non-permeabilized and permeabilized tail artery rings. The cyclic heptapeptide mycrocystin-LR (MC-LR) (10(-5) M), an inhibitor of type 1 and 2A phosphatases, induced sustained increase in tension of beta-escin permeabilized rings in low Ca2+ (10(-8) M) solution. The tension was not affected by authentic NO and SNP. We conclude that authentic NO and SNP relax rat tail artery smooth muscle (SM) in the presence of inhibitors of sGC via cyclic guanosine monophosphate (cGMP)-independent pathway, whereas relaxation induced by GTN is inhibited. The data demonstrate that cGMP-dependent pathway in vascular smooth muscle is ubiquitous, but not the only way of relaxation induced by NO. NO can modulate vascular tone directly by reducing sensitivity of contractile myofilaments to [Ca2+]i and may involve activation of protein phosphatase(s).  相似文献   

16.
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation.  相似文献   

17.
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.  相似文献   

18.
The participation of voltage-sensitive Na+ channels (VSSC) on the changes on internal (i) Na+, K+, Ca2+, and on DA, Glu, and GABA release caused by different concentrations of 4-AP was investigated in striatum synaptosomes. TTX, which abolished the increase in Na(i) (as determined with SBFI), induced by 0.1 mM 4-AP only inhibited by 30% the rise in Na(i) induced by 1 mM 4-AP. One millimolar 4-AP markedly decreased the fluorescence of the K+ indicator dye PBFI but 0.1 mM 4-AP did not. Like 1 mM 4-AP, ouabain decreased PBFI fluorescence and increased a considerable fraction of Na(i) in a TTX-insensitive manner. In contrast with the different TTX sensitivity of the rise in Na(i) induced by 0.1 and 1 mM 4-AP, the rise in Ca(i) (as determined with fura-2) induced by the two concentrations of 4-AP was markedly inhibited by TTX, as well as by omega-agatoxin in combination with omega-conotoxin GVIA, indicating that only the TTX-sensitive fraction of the rise in Na(i) induced by 4-AP is linked with the activation of presynaptic Ca2+ channels. It is concluded that the TTX-sensitive fraction of neurotransmitter release evoked by 4-AP is released by exocytosis, and the TTX insensitive fraction involves reversal of the neurotransmitters transporters. This contrasts with the exocytosis evoked by high K+ that is unchanged by TTX and with the neurotransmitter-transporter-mediated release evoked by veratridine, which is highly TTX sensitive and does not require activation of Ca2+ channels.  相似文献   

19.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

20.
Chen SJ  Wu CC  Yang SN  Lin CI  Yen MH 《Life sciences》2000,68(6):659-668
We have examined the role of membrane hyperpolarization in mediating vascular hyporeactivity induced by bacterial lipopolysaccharide (LPS) in endothelial-denuded strips of rat thoracic aorta ex vivo. The injection of rats with LPS caused a significant fall of blood pressure and a severe vascular hyporeactivity to norepinephrine. The membrane potential recording showed that endotoxemia caused a hyperpolarization when compared to the control. This hyperpolarization was fully restored by methylene blue (MB; 10 microM) and partially reversed by Nomega-nitro-L-arginine methyl ester (L-NAME; 0.3 mM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), tetraethylammonium (TEA; 10 mM), charybdotoxin (CTX; 0.1 microM), or glibenclamide (GB; 10 microM), however, this hyperpolarization was not significantly affected by apamin (0.1 microM), 4-aminopyridine (4-AP; 1 mM), or Ba2+ (50 microM). In addition, the basal tension of the tissues obtained from endotoxemic rats was enhanced by the following order: MB > or = ODQ > TEA > or = L-NAME > or = CTX > GB; whereas apamin, 4-AP or Ba2+ had no significant effects on these tissues. In contrast, none of these inhibitors had significant effects on the membrane potential or the basal tension in control tissues. Our electrophysiological results further confirmed previous studies showing that in addition to nitric oxide, the large conductance Ca2+-activated K+-channels and ATP-sensitive K+-channels are, most likely, responsible for endotoxin-mediated hyporeactivity to vasoconstrictor agents in vascular smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号