共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael P. Ward Michael T. Abberton Brian G. Forde Adrian Sherman William T. B. Thomas John L. Wray 《Molecular genetics and genomics : MGG》1995,247(5):579-582
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3′ end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3′ untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked. 相似文献
2.
Michael P. Ward Michael T. Abberton Brian G. Forde Adrian Sherman William T. B. Thomas John L. Wray 《Molecular & general genetics : MGG》1995,247(5):579-582
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked. 相似文献
3.
The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. 总被引:4,自引:4,他引:4 下载免费PDF全文
H C Yen S Lee S D Tanksley M B Lanahan H J Klee J J Giovannoni 《Plant physiology》1995,107(4):1343-1353
Fruit ripening represents a complex system of genetic and hormonal regulation of eukaryotic development unique to plants. We are using tomato ripening mutants as tools to elucidate genetic components of ripening regulation and have recently demonstrated that the Never-ripe (Nr) mutant is insensitive to the plant growth regulator ethylene (M.B. Lanahan, H.-C. Yen, J.J. Giovannoni, H.J. Klee [1994] Plant Cell 6:521-530). We report here ethylene sensitivity over a range of concentrations in normal and Nr tomato seedlings and show that the Nr mutant retains residual sensitivity to as little as 1 part per million of ethylene. Analysis of ripening-related gene expression in normal and mutant ethylene-treated fruit demonstrates that Nr exerts its influence on development at least in part at the level of ethylene-inducible gene expression. We have additionally used cloned tomato and Arabidopsis sequences known to influence ethylene perception as restriction fragment length polymorphism probes, and have identified a tomato locus linked to Nr that hybridizes to the Arabidopsis ETR1 gene at low stringency, suggesting the possibility that Nr may be homologous to ETR1. 相似文献
4.
5.
Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs 总被引:31,自引:0,他引:31
R. G. F. Visser I. Somhorst G. J. Kuipers N. J. Ruys W. J. Feenstra E. Jacobsen 《Molecular & general genetics : MGG》1991,225(2):289-296
Summary Granule-bound starch synthase [GBSS; EC 24.1.21] determines the presence of amylose in reserve starches. Potato plants were transformed to produce antisense RNA from a gene construct containing a full-length granule-bound starch synthase cDNA in reverse orientation, fused between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator. The construct was integrated into the potato genome by Agrobacterium rhizogenes-mediated transformation. Inhibition of GBSS activity in potato tuber starch was found to vary from 70% to 100%. In those cases where total suppression of GBSS activity was found both GBSS protein and amylose were absent, giving rise to tubers containing amylose-free starch. The variable response of the transformed plants indicates that position effects on the integrated sequences might be important. The results clearly demonstrate that in tubers of potato plants which constitutively synthesize antisense RNA the starch composition is altered. 相似文献
6.
7.
Ricardo Fujita Craig Skolnick Andrew J. Pakstis Teresa L. Yang-Feng Anand Swaroop 《Human genetics》1995,95(4):467-468
A polymorphic CA repeat (locus name DXS1178) was isolated from a 1-megabase YAC (OTCC) containing the OTC gene, located at Xp21.1. However, amplification in human-rodent hybrid cells and segregation analysis in three CEPH families mapped the DXS1178 locus at Xq13. The mapping ambiguity is apparently caused by the chimeric nature of the OTCC YAC clone. 相似文献
8.
Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events 总被引:1,自引:0,他引:1
Cheng J Khan MA Qiu WM Li J Zhou H Zhang Q Guo W Zhu T Peng J Sun F Li S Korban SS Han Y 《PloS one》2012,7(1):e30088
Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ~251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ~165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ~126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots. 相似文献
9.
Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants 总被引:3,自引:0,他引:3
Otani M Hamada T Katayama K Kitahara K Kim SH Takahata Y Suganuma T Shimada T 《Plant cell reports》2007,26(10):1801-1807
Granule-bound starch synthase I (GBSSI) is one of the key enzymes catalyzing the formation of amylose, a linear α(1,4)D-glucan
polymer, from ADP-glucose. Amylose-free transgenic sweet potato plants were produced by inhibiting sweet potato GBSSI gene expression through RNA interference. The gene construct consisting of an inverted repeat of the first exon separated
by intron 1 of GBSSI driven by the CaMV 35S promoter was integrated into the sweet potato genome by Agrobacterium tumefaciens-mediated transformation. In over 70% of the regenerated transgenic plants, the expression of GBSSI was inactivated giving rise to storage roots containing amylopectin but not amylose. Electrophoresis analysis failed to detect
the GBSSI protein, suggesting that gene silencing of the GBSSI gene had occurred. These results clearly demonstrate that amylose synthesis is completely inhibited in storage roots of sweet
potato plants by the constitutive production of the double-stranded RNA of GBSSI fragments. We conclude that RNA interference is an effective method for inhibiting gene expression in the starch metabolic
pathway. 相似文献
10.
11.
In the mouse, innate resistance or susceptibility to infection with a group of unrelated intracellular parasites which includes, Mycobacteria, Salmonella, and Leishmania is determined by the expression of a single dominant autosomal gene designated Bcg located on the proximal portion of chromosome 1. The gene is expressed at the level of the mature tissue macrophage and influences its capacity to restrict intracellular proliferation of the parasites. We have used restriction fragment length polymorphism analysis in segregating populations of inter- and intraspecific backcross mice and in recombinant inbred strains to position four new marker genes, transition protein 1 (Tp-1), desmin (Des), the alpha subunit of inhibin (Inha), and retinal S-antigen (Sag), in the vicinity of the host resistance locus, Bcg. The gene order for Tp-1, Des, Inha, and Sag was established in an eight-point testcross with respect to anchor loci previously assigned to that portion of mouse chromosome 1 and was found to be centromere-Fn-1-Tp-1-(Vil,Bcg)-Des-Inha-Akp-3-Acrg+ ++-Sag. Two of these new marker genes were found very tightly linked to Bcg: Des was located 0.3 +/- 0.3 cM distal from (Vil,Bcg) and 0.3 +/- 0.3 cM proximal to Inha. Tp-1 mapped 0.8 +/- 0.8 cM proximal and Sag 12.8 +/- 1.7 cM distal to (Vil,Bcg). Tp-1, Des, Inha, and Sag all fall within a large mouse chromosome 1 segment homologous with the telomeric region of the long arm of human chromosome 2 (2q). Our findings indicate that the two closest markers to the host resistance locus, Bcg, encode cytoskeleton-associated proteins which are capable of interaction with actin filaments. 相似文献
12.
A novel RNA helicase gene tightly linked to the Triplo-lethal locus of Drosophila. 总被引:5,自引:1,他引:4 下载免费PDF全文
The Triplo-lethal (Tpl) locus of Drosophila is the only known locus which is lethal when present in three copies rather than the normal two. After recovering a hybrid-dysgenesis-induced mutation of Tpl we used a rapid combination of transposon tagging, chromosome microdissection and PCR to clone the P element that had transposed into the Tpl region. That P element is located within the gene for a new and unique member of the RNA helicase family. This new helicase differs from all others known by having glycine-rich repeats at both the amino and carboxyl termini. Curiously, genetic analysis shows that the P element inserted into this gene is not responsible for the Tpl mutant phenotype. We present possible explanations for these findings. 相似文献
13.
14.
15.
Enhancers play an important role in chromatin opening but the temporal relationship between enhancer activation and the generation of an accessible chromatin structure is poorly defined. Recombination enhancers are essential for chromatin opening and subsequent V(D)J recombination at immunoglobulin loci. In mice, the kappa light chain locus displays an open chromatin structure before the lambda locus yet the same proteins, PU.1/PIP, trigger full enhancer activation of both loci. Using primary B cells isolated from distinct developmental stages and an improved method to quantitatively determine hypersensitive site formation, we find the kappa and lambda recombination enhancers become fully hypersensitive soon after transition to large and small pre-B-II cells, respectively. This correlates strictly with the stages at which these loci are activated. Since these cells are short-lived, these data imply that there is a close temporal relationship between full enhancer hypersensitive site formation and locus chromatin opening. 相似文献
16.
Jian Liu Tingzhao Rong Wanchen Li 《Molecular breeding : new strategies in plant improvement》2007,20(2):93-102
Four pairs of specific PCR primers have been designed on the basis of the sequence of the granule-bound starch synthase gene
(GBSS; dominant non-waxy gene Wx) and used to amplify its homologous sequence from thirteen waxy and two non-waxy inbred lines. Results from electrophoresis
indicated that the recessive waxy gene was wx, derived from the dominant non-waxy gene Wx by mutation at its 3′ end. The sequence of the mutated 3′ end was amplified by the TAIL-PCR technique. Sequence alignment
showed that the mutation of the wx gene was caused by transposition of the aldehyde dehydrogenase gene rf2. Two pairs of specific primers were designed on the basis of the sequence difference between the dominant gene Wx and its mutated recessive allele wx and used as intragenic selection markers to identify individual plants of genotypes WxWx, Wxwx, and wxwx by PCR amplification from the segregating population of the F2 generation crossed between waxy and non-waxy inbred lines. Iodine solution staining and starch component assay showed that
all the 35 F2 plants identified as genotype WxWx produced non-waxy kernels of the F3 generation and that all 33 F2 plants identified as genotype wxwx produced waxy kernels of the F3 generation. This result can be used to improve the selection efficiency of waxy maize breeding and for selection of other
single genes and major polygenes. 相似文献
17.
The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility 总被引:3,自引:0,他引:3
Evans RC Alice LA Campbell CS Kellogg EA Dickinson TA 《Molecular phylogenetics and evolution》2000,17(3):388-400
We sampled the 5' end of the granule-bound starch synthase gene (GBSSI or waxy) in Rosaceae, sequencing 108 clones from 18 species in 14 genera representing all four subfamilies (Amygdaloideae, Maloideae, Rosoideae, and Spiraeoideae), as well as four clones from Rhamnus catharticus (Rhamnaceae). This is the first phylogenetic study to use the 5' portion of this nuclear gene. Parsimony and maximum-likelihood analyses of 941 bases from seven complete and two partial exons demonstrate the presence of two loci (GBSSI-1 and GBSSI-2) in the Rosaceae. Southern hybridization analyses with locus-specific probes confirm that all four Rosaceae subfamilies have at least two GBSSI loci, even though only one locus has been reported in all previously studied diploid flowering plants. Phylogenetic analyses also identify four clades representing four loci in the Maloideae. Phylogenetic relationships inferred from GBSSI sequences are largely compatible with those from chloroplast (cpDNA: ndhF, rbcL) and nuclear ribosomal internal transcribed spacer (nrITS) DNA. Large clades are marked by significant intron variation: a long first intron plus no sixth intron in Maloideae GBSSI-1, a long fourth intron in Rosoideae GBSSI-1, and a GT to GC mutation in the 5' splice site of the fourth intron in all GBSSI-2 sequences. Our data do not support the long-held hypothesis that Maloideae originated from an ancient hybridization between amygdaloid and spiraeoid ancestors. Instead, Spiraeoideae genera (Kageneckia and Vauquelinia) are their closest relatives in all four GBSSI clades. 相似文献
18.
Gerrit van der Steege Maarten Nieboer Jelto Swaving M. J. Tempelaar 《Plant molecular biology》1992,20(1):19-30
Chimaeric genes of promoter sequences from the potato gene encoding granule-bound starch synthase (GBSS) and the -glucuronidase (GUS) reporter gene were used to study GBSS expression and regulation. Analysis of stable transformants revealed that a GBSS promoter sequence of 0.4 kb was sufficient to result in tissue-dependent GUS expression: levels in stably transformed microtubers exceeded levels in corresponding leaves by orders of magnitude. GBSS-GUS constructs could be transiently expressed in leaf protoplasts from wild-type and amylose-free potato lines, etuberosumSolanum brevidens, Nicotiana tabacum andArabidopsis thaliana. Transient expression levels in potato leaf protoplasts were clearly lower than in corresponding suspension cell protoplasts. This lower expression in leaf protoplasts could not be elevated by increasing DNA concentrations during transfection. Light incubation of electroporated suspension cell protoplasts reduced transient GBSS-GUS expression, whereas incubation of transfected protoplasts in media with different sucrose concentrations did not affect transient expression levels. However, electroporated protoplasts, isolated from suspensions, which had been grown on media with increasing amounts of sucrose showed a sucrose concentration-dependent transient expression profile. This indicates that studying GBSS regulation by transient expression experiments needs pre-treatment of the protoplast source. Sequence data of the GBSS promoter were compared to those of two other potato alleles. 相似文献
19.
Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. 总被引:20,自引:0,他引:20
Complete genomic DNA sequences of three homoeologous Waxy structural genes, located on the chromosomes 7A, 4A, and 7D in hexaploid wheat (Triticum aestivum L. cv. Chinese Spring), were separately determined and analyzed. Those structural genes in lengths from start to stop codon were 2781bp in Wx-7A, 2794bp in Wx-4A, and 2862bp in Wx-7D, each of which consisted of 11 exons and ten introns. They were closely similar to one another in the nucleotide sequences, with 95.6-96.3% homology in mature protein regions, 88. 7-93.0% in transit-peptide regions, and 70.5-75.2% in the introns. These wheat Waxy genes were GC-rich when compared with standard values for plant genomes reported so far. This was reflected in the extremely high G/C occupation frequency at the third position of the codons in the coding regions. The sequence divergence in the exon regions was mostly due to the substitution of nucleotides, whereas that found in the introns was attributed to substitution, insertion and/or deletion of nucleotides. Only the Wx-4A gene contained a trinucleotide insertion (CAA) in the region encoding the transit peptide. Most of the substitutions observed in the exon regions were categorized as synonymous, and higher sequence similarities (96.5-97. 4%) were conserved at the protein level. The phylogenetic tree obtained in terms of the amino acid sequence variations showed a well-resolved phylogenetic relationship among wheat Waxy genes and those from other plants. 相似文献