首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The p53 tumor suppressor is implicated in cell cycle control, DNA repair, replicative senescence and programmed cell death. Inactivation of the p53 contributes to the wide range of human tumors, including glial neoplasms. In this review, we describe the regulation and biochemical properties of p53 protein that may explain its ability to activate various genetic programs underlying cellular responses to stress conditions. The overall spectrum of p53 mutations is rather shared between tumor types indicating that these mutations are not tumor type-specific. However, there is one example of germ-line mutation of p53 gene (the deletion of the codon 236) that is associated with a familiar brain tumor syndrome. We compare the frequency and type of most common mutations among various brain tumours (focusing on glioblastomas) and their consequences on protein functions. Furthermore, we discuss the most promising approaches of potential brain tumor therapy, including an adenovirus-mediated p53 gene transfer. Human glioblastomas are highly sensitive to the effects of p53 activity when the wild-type p53 is introduced ectopically. It suggests that the genetic or pharmacological modulation of the p53 pathway is potentially important strategy in the treatment of human cancers.  相似文献   

3.
Identification of the precise molecular pathways involved in oncogene-induced transformation may help us gain a better understanding of tumor initiation and promotion. Here, we demonstrate that SOX2+ foregut epithelial cells are prone to oncogenic transformation upon mutagenic insults, such as KrasG12D and p53 deletion. GFP-based lineage-tracing experiments indicate that SOX2+ cells are the cells-of-origin of esophagus and stomach hyperplasia. Our observations indicate distinct roles for oncogenic KRAS mutation and P53 deletion. p53 homozygous deletion is required for the acquisition of an invasive potential, and KrasG12D expression, but not p53 deletion, suffices for tumor formation. Global gene expression analysis reveals secreting factors upregulated in the hyperplasia induced by oncogenic KRAS and highlights a crucial role for the CXCR2 pathway in driving hyperplasia. Collectively, the array of genetic models presented here demonstrate that stratified epithelial cells are susceptible to oncogenic insults, which may lead to a better understanding of tumor initiation and aid in the design of new cancer therapeutics.  相似文献   

4.
Mice with a defect in the xeroderma pigmentosum group A (XPA) gene have a complete deficiency in nucleotide excision repair (NER). As such, these mice mimic the human XP phenotype in that they have a >1000-fold higher risk of developing UV-induced skin cancer. Besides being UV-sensitive, XPA−/− mice also develop internal tumors when they are exposed to chemical carcinogens. To investigate the effect of a total NER deficiency on the induction of gene mutations and tumor development, we crossed XPA−/− mice with transgenic lacZ/pUR288 mutation-indicator mice. The mice were treated with various agents and chemicals like UV-B, benzo[a]pyrene and 2-aceto-amino-fluorene. Gene mutation induction in several tumor target- and non-target tissues was determined in both the bacterial lacZ reporter gene and in the endogenous Hprt gene. Furthermore, alterations in the p53- and ras genes were determined in UV-induced skin tumors of XPA−/− mice. In this work, we review these results and discuss the applicability and reliability of enhanced gene mutant frequencies as early indicators of tumorigenesis.  相似文献   

5.
Outbred carcinogenesis-resistant (Car-R) and carcinogenesis-susceptible (Car-S) mouse lines were generated by phenotypic selection for resistance or susceptibility to two-stage skin carcinogenesis. These two Car mouse lines differ by >100-fold in susceptibility. In the present study, we tested the hypothesis that a subset of genetic loci responsible for susceptibility or resistance to chemical skin tumorigenesis may also be involved in radiation-induced skin tumorigenesis. Skin tumorigenesis was tested in groups of Car-S/R mice after X-ray initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion. We found that ionizing radiation can initiate skin tumors in Car-S mice but not in Car-R mice. In Car-S mice, the most effective radiation doses (6 and 10 Gy given in four fractions) gave a threefold increase in tumor multiplicity and a twofold increase in tumor incidence compared to a TPA-only control group. We performed a molecular analysis of Hras gene mutations in skin tumors of Car-S mice induced by X-ray initiation/TPA promotion or by TPA promotion alone. The most notable difference emerging from the comparison of these mutation patterns is the high incidence ( approximately 50%) of papillomas lacking Hras gene mutations in X-ray-initiated/TPA-promoted papillomas compared to 13% in papillomas induced by TPA alone, suggesting that lack of Hras gene mutations is a consistent feature of radiation-induced papillomas.  相似文献   

6.
He D  Li H  Yusuf N  Elmets CA  Athar M  Katiyar SK  Xu H 《PloS one》2012,7(2):e32126
The mechanism for inflammation associated tumor development is a central issue for tumor biology and immunology and remains to be fully elucidated. Although IL-17 is implicated in association with inflammation mediated carcinogenesis, mechanisms are largely elusive. In the current studies, we showed that IL-17 receptor-A gene deficient (IL-17R-/-) mice were resistant to chemical carcinogen-induced cutaneous carcinogenesis, a well-established inflammation associated tumor model in the skin. The deficiency in IL-17R increased the infiltration of CD8+ T cells whereas it inhibited the infiltration of CD11b+ myeloid cells and development of myeloid derived suppressor cells. Inflammation induced skin hyperplasia and production of pro-tumor inflammatory molecules were inhibited in IL-17R-/- mice. We found that pre-existing inflammation in the skin increased the susceptibility to tumor growth, which was associated with increased development of tumor specific IL-17 producing T cells. This inflammation induced susceptibility to tumor growth was abrogated in IL-17R-/- mice. Finally, neutralizing IL-17 in mice that had already developed chemical carcinogen induced skin tumors could inhibit inflammation mediated tumor progression at late stages. These results demonstrate that IL-17 mediated inflammation is an important mechanism for inflammation mediated promotion of tumor development. The study has major implications for targeting IL-17 in prevention and treatment of tumors.  相似文献   

7.
The p21(WAF1/cIP1) cyclin-dependent kinase (cdk) inhibitor is a regulator of the G(1)-S cell cycle checkpoint. Despite the importance of p21 in cell cycle inhibition, its role as a tumor suppressor is uncertain. p21 mutations are infrequent in human tumors, and p21 null mice exhibit no increased tumor incidence. To ascertain whether p21 could influence tumor formation or progression in the context of other oncogenic stimuli, we crossed p21-deficient mice with mammary tumor susceptible Wnt-1 transgenic mice. The p21+/+, p21+/-, and p21-/- Wnt-1 transgenic female offspring were monitored for mammary tumor incidence and growth rates. p21 status had no effect on the age at which mammary tumors formed. However, p21+/- mammary tumors grew significantly faster than p21+/+ and p21-/- mammary tumors. The increased growth rates were confirmed by mitotic index counts and by BrdUrd labelling assays, indicating that a significantly higher percentage of p21+/- tumor cells were in S phase and mitosis than their p21+/+ and p21-/- counterparts. Moreover, cyclin D1-associated phosphorylation of retinoblastoma protein was significantly increased in p21+/- tumor lysates compared with p21+/+ and p21-/- lysates. These results are consistent with data indicating that reduced levels of p21 can facilitate cyclin/cdk complex formation while enhancing cdk activity. Thus, a reduction of p21 dosage may promote tumor progression in the presence of other oncogenic initiators. The dependence of p21 on prior oncogenic stimuli for its tumor-promoting activities suggests that it may behave as a tumor modifier gene rather than as a tumor suppressor gene.  相似文献   

8.
The Southern DNA filter transfer technique was used to study the involvement of the endogenous mouse mammary tumor virus (MMTV) in the development of mammary tumors of nonviral etiology. The presence of extra MMTV proviruses in the genomes of these non-virally induced mammary tumors would indicate an integration of the provirus of an activated endogenous MMTV. Acquisition of MMTV proviruses did not seem to be an absolute requirement for the development of hormone or carcinogenically induced mammary tumors in strain BALB/c nor for hormone-induced mammary tumors in mouse strains 020, C57BL, and C3Hf. In some hormone-induced mammary tumors we did observe extra MMTV proviruses in submolar quantities, indicating that reintegration may occasionally occur and that only a part of the tumor cells acquired new MMTV DNA information. Hormone-dependent and -independent primary mammary tumors of the mouse strain GR, which are controlled by the Mtv-2 mammary tumor induction gene, all acquired extra MMTV proviruses. Most of these extra MMTV proviral-DNA-containing fragments appeared present in submolar quantities, suggesting that only part of the tumor cells acquired extra MMTV proviral information. These findings indicate that the initially transformed mammary gland cells of non-virally induced mammary tumors do not necessarily acquire extra MMTV proviral DNA information, in contrast to the MMTV-induced mammary tumors, in which all tumor cells contain extra MMTV DNA information.  相似文献   

9.
10.
Cyclooxygenase-2 (COX-2) overexpression is a widely recognized feature of human breast cancer and inhibitors of the enzyme have antitumor effects in a subset of tumor settings. Previously, we demonstrated that direct overexpression of COX-2 under control of the mammary-specific MMTV promoter/enhancer, was itself oncogenic and lead to the induction of mammary tumors in multiparous, outbred CD1 mice. In the present study, we provide evidence that COX-2 dependent tumor progression can also be studied in FVB/N, an inbred strain widely used for analysis of breast cancer progression. In these mice, the human COX-2 transgene was strongly induced during pregnancy/lactation and mammary tumors developed after multiple pregnancies. However, crossing the COX-2 FVB/N mice with the C57BL6 strain resulted in loss of the mammary tumorigenic phenotype despite the fact that the human COX-2 gene was induced. Treatment of the COX-2 transgenic mice in the FVB/N strain with celecoxib (1600 ppm), a COX-2 selective inhibitor, resulted significant reduction in tumor size and multiplicity when compared to transgenic mice fed with control chow. SC-560 (20 ppm), a COX-1 selective inhibitor did not have significant effect on tumorigenesis. These studies suggest that FVB/N is a susceptible mouse strain well suited to the study of COX-2 mediated tumor progression and may provide a tool for the identification of interacting genes and therapeutic treatments for this clinically important target.  相似文献   

11.
Previously, we identified a group of replication-competent exogenous mouse mammary tumor viruses that failed to induce mammary tumors in susceptible mice. Sequence comparison of tumorigenic and tumor-attenuated virus variants has linked the ability of virus to cause high-frequency mammary tumors to the gag gene. To determine the specific sequences within the gag gene that contribute to tumor induction, we constructed five distinct chimeric viruses that have various amino acid coding sequences of gag derived from a tumor-attenuated virus replaced by those of highly tumorigenic virus and tested these viruses for tumorigenic capacities in virus-susceptible C3H/HeN mice. Comparing the tumorigenic potentials of these viruses has allowed us to map the region responsible for tumorigenesis to a 253-amino-acid region within the CA and NC regions of the Gag protein. Unlike C3H/HeN mice, BALB/cJ mice develop tumors when infected with all viral variants, irrespective of the gag gene sequences. Using genetic crosses between BALB/cJ and C3H/HeN mice, we were able to determine that the mechanism that confers susceptibility to Gag-independent mammary tumors in BALB/cJ mice is inherited as a dominant trait and is controlled by a single gene, called mammary tumor susceptibility (mts), that maps to chromosome 14.  相似文献   

12.
目的:建立一个合适的乳腺癌动物模型将在研究人类乳腺癌的发生、发展、转移等方面中发挥着越来越重要的作用。7,12-二甲基苯并蒽(7,12-dimethylbenz anthracene,DMBA)在实验中能诱导大鼠产生乳腺肿瘤。树鼩的基因的结构与人类的相似程度比啮齿类动物要高,而且树鼩的自发性乳腺癌已经有被报道,因而树鼩很有可能是研究乳腺肿瘤更合适的动物模型。因此我们想用致癌剂DMBA诱导树鼩产生乳腺肿瘤而建立树鼩的乳腺肿瘤模型。方法:在这个研究中,我们采用了十只在分娩之后失去幼崽的雌树鼩,其中一半的树鼩在腰部双侧乳房的脂肪垫注射100 mg/kg的DMBA,其余的树鼩作为对照组没有作DMBA处理。对生成的肿瘤组织进行病理切片HE染色的形态特点分析以及免疫组化化学法测定Ki-67、雌激素受体、孕酮受体、人表皮生长因子受体-2、E-钙粘蛋白、P120连环蛋白的表达。结果:通过诊断在DMBA处理的树鼩中,5分之1发展浸润性导管癌,其余发展成原位导管癌。结果还证明了诱导出来的乳腺肿瘤的形态学和病理学特征与人类的浸润性导管癌相似。结论:结果显示我们采用DMBA注射失去幼崽的雌树鼩的乳腺来诱导乳腺肿瘤是有效的,诱导出来的肿瘤组织学特征与人的乳腺癌相似,诱导的肿瘤组织表达目前人常用的乳腺癌相关分子生物学标记,并且表达情况与人的乳腺癌相似。这表明了DMBA诱导树鼩乳腺癌可以提供一个适合于研究人类乳腺癌发生、发展、转移和治疗的动物模型。  相似文献   

13.
The frequency with which int-1 and int-2 are rearranged in mouse mammary tumors by mouse mammary tumor virus (MMTV)-induced insertional mutagenesis is a consequence of the host genetic background. In 75% of C3H mammary tumors, int-1 is rearranged by MMTV insertion, whereas only 30% of BALB/cfC3H tumors contain a virus-induced rearrangement of int-1. This difference is significant (P less than 0.005) and could not be accounted for by the potentially additive effect of the genetically transmitted Mtv-1-encoded virus in C3H mice. Similarly, MMTV-induced rearrangement of the int-2 gene in mammary tumors of the R111 mouse strain (59%) occurred at a significantly (P less than 0.025) higher frequency than in BALB/cfR111 (25%) mammary tumors. Moreover, in BALB/cfR111 mammary tumors, there is evidence that rearrangement of int-1 and int-2 does not occur independently (P less than 0.025). These results suggest that the long history of inbreeding for high tumor incidence of C3H and R111 mouse strains has selected for the fixation of host mutations which either complement the action of the particular int gene or affect the sensitivity of specific subpopulations of mammary epithelium to infection by particular strains of MMTV.  相似文献   

14.
We have developed transgenic mice in which expression of the mouse int-2/Fgf-3 gene is regulated by a single long terminal repeat from mouse mammary tumor virus. Such mice contain and transmit a replica of the activated int-2/Fgf-3 allele present in a spontaneous mammary tumor from a BR6 mouse. Although free of infectious mouse mammary tumor virus and with a different genetic background, the transgenic mice develop pregnancy-responsive mammary epithelial proliferations that are similar to the early stages of tumorigenesis in the BR6 strain. Histological examination revealed that most of these tumors showed pronounced tubular and acinar structures, features usually associated with morphological differentiation. In some cases, the tumors were locally invasive, causing disruption of the dermis which manifested itself as local hair loss. In situ hybridization showed that patterns of transgene expression in the abnormal glands were markedly nonuniform. In contrast, mouse mammary tumor virus-induced neoplasms showed more uniform expression of int-2/Fgf-3, as did the urogenital epithelial proliferations that occur among males of this transgenic line. These data suggest that mammary tumors in virally infected animals may depend primarily on autocrine stimulation by the int-2/Fgf-3 gene product, whereas both autocrine and paracrine mechanisms may contribute to tumors and hyperplasias found in transgenic animals.  相似文献   

15.
16.
Retroviruses are believed to induce tumors by acting as insertional mutagens that activate expression of cellular protooncogenes. Indeed, almost 90% of mouse mammary tumor virus (MMTV)-induced mammary tumors in C3H/He mice show upregulation of Int protooncogenes. We have analyzed three different MMTV variants [MMTV(C3H), MMTV(HeJ), and a genetically engineered MMTV hybrid provirus (HP)] for tumorigenicity in mice from two distinct genetic backgrounds. All three viruses were tumor causing in BALB/cJ mice. However, only MMTV(C3H), but not MMTV(HeJ) or HP, induced mammary tumors in C3H/He mice. All of the viruses were infectious on either background and up-regulated expression of Int genes in tumors they induced. Like HP, MMTV(HeJ) was found to be a genetic recombinant between endogenous Mtv1 provirus and exogenous MMTV(C3H). Sequence comparison of MMTV variants linked the tumorigenicity of MMTV(C3H) to the gag region of the retrovirus.  相似文献   

17.
C3H/Sm mice have lost the exogenous milk-borne mouse mammary tumor virus (MMTV) characteristic of the C3H strain and have a very low (1.5%) incidence of spontaneous mammary tumors, yet they are highly susceptible to mammary carcinogenesis by either chemical carcinogens or infection with the milk-borne virus. We have analyzed the MMTV proviral DNA content of normal tissues and of spontaneous, virus-induced, and chemically induced mammary tumors by restriction endonuclease digestion and Southern blot analysis. Although the results clearly showed additional MMTV sequences in the virus-induced tumor which are not present in normal liver DNA, none of the spontaneous or chemically induced tumors could be shown to contain either newly acquired exogenous or amplified endogenous MMTV sequences. Interestingly, mammary tumors arising in C3H/Sm mice treated simultaneously with infectious MMTV (C3H) and dimethylbenz[a]anthracene (DMBA) possessed new exogenous MMTV DNA even though no quantitative change in tumor production was observed when these mice were compared with C3H/Sm mice treated with DMBA alone (Smith et al., Int. J. Cancer 26:373-379, 1980). Our data indicate that the endogenous MMTV proviral units are extensively methylated in normal tissues, such as livers and normal nonlactating mammary glands. In the absence of MMTV (C3H), we found that in the rare, spontaneously occurring C3H/Sm mammary tumors, certain endogenous MMTV sequences were specifically hypomethylated. Hypomethylation of endogenous MMTV sequences was also noted in the chemically induced mammary tumors, even though radioimmune competition assays for MMTV gp52 and p28 are negative (Smith et al., Int. J. Cancer 27:81-86, 1981). Our results support the conclusion that amplification of endogenous MMTV sequences is not intrinsic to C3H/Sm mouse mammary tumors arising spontaneously or after induction by chemicals. On the other hand, integration of exogenous MMTV DNA into the genome was a constant feature of mammary tumors developing in MMTV (C3H)-infected C3H/Sm mice, even when DMBA was used as the carcinogen. Hypomethylation of some endogenous MMTV sequences is characteristic of C3H/Sm mammary tumors, whether spontaneous or induced by chemicals, which suggests that these sequences are located in actively transcribing regions of the tumor cell genome.  相似文献   

18.
R Bremner  A Balmain 《Cell》1990,61(3):407-417
Initiation of tumorigenesis in mouse skin can be accomplished by mutagenesis of the H-ras gene by treatment with chemical carcinogens. A mouse model system has been developed to study the additional genetic events that take place during tumor progression. Skin carcinomas were induced in F1 hybrid mice exhibiting restriction fragment length polymorphisms at multiple chromosomal loci. Analysis of loss of heterozygosity in such tumors showed that imbalance of alleles on mouse chromosome 7, on which the H-ras gene is located, occurs very frequently in skin carcinomas. The chromosomal alterations detected, which included both nondisjunction and mitotic recombination events, were only seen in tumors that have activated ras genes. We conclude that gross chromosomal alterations that elevate the copy number of mutant H-ras and/or lead to loss of normal H-ras are a consistent feature of mouse skin tumor development.  相似文献   

19.
Interference in growth factor mediated pathways is a new strategy in the treatment of cancer. Somatostatin analogs can inhibit hormone and growth factor secretion, while suramin can block the binding of several growth factors to their receptors. In addition, somatostatin analogs can cause direct growth inhibitory effects after binding to tumoral somatostatin receptors. We tested the efficacy and endocrine effects of chronic treatment with three somatostatin analogs (Sandostatin,® RC-160 and CGP 15–425) or suramin in several tumor models and in patients with various types of cancer. Treatment with somatostatin analogs caused growth inhibition of breast cancer cells (MCF-7) in vitro, and of rat transplantable pancreatic (50–70% inhibition) and prostatic Dunning tumors (12% inhibition). No tumor growth inhibition was observed with respect to DMBA-induced rat mammary tumors, a transplantable color tumor and a rhabdomyosarcoma in rats. In 34 patients with metastatic pancreatic or gastrointestinal adenocarcinomas chronic Sandostatin treatment caused stable disease in 27% of the patients, but no objective remissions. Somatostatin receptors were found in the responding MCF-7 mammary tumor cells, rat pancreatic tumors and in 20–45% of human breast cancer specimens [J. Steroid Biochem. Molec. Biol. 37 (1990) 1073–1077], but not in rat DMBA-mammary tumors or in 10 human pancreatic adenocarcinomas. Suramin caused significant dose-dependent growth inhibition of human breast cancer cells in vitro and of rat pancreatic tumors in vivo in the presence of plasma levels up to 150 μg/ml. In a preliminary clinical study concerning 11 patients with various tumor types we observed significant hematological, biochemical, endocrine and clinical side effects, but no objective remissions in spite of relevant peak plasma suramin concentrations of 270–330 μg/ml. In conclusion: somatostatin analogs and suramin can cause growth inhibition of various experimental tumors in vitro and in vivo, but the clinical values has to be established for several types of cancer, especially with respect to suramin and suramin-like compounds.  相似文献   

20.
Complete remissions of the androgen-dependent Shionogi mouse mammary carcinoma are observed after androgen withdrawal but invariably the disease recurs and is refractory to further hormonal manipulations. To determine the proportions of androgen-dependent (AD) and -independent (AI) tumorigenic stem cells in parent and recurrent tumors and in vivo limiting dilution assay was developed. There was a marked enrichment of stem cells in the recurrent tumors (1/200 tumor cells) relative to the parent tumors (1/4000 tumor cells) when assayed in male hosts. By assaying tumor takes in female mice, the proportion of AI stem cells was found to be 1/370,000 tumor cells in the parent vs 1/800 tumor cells in the recurrent carcinoma; a 500-fold increase in AI stem cells resulting from androgen-withdrawal. Unexpectedly, no enrichment of AI stem cells was evident in regressing parent tumors; rather, the proportion of such cells was very small (1/2,200,000 tumor cells). This finding implies that the AI cells which survive androgen withdrawal may result from the ability of small number of initially AD stem cells to adapt to an altered hormonal environment. This adaptive process was further defined in terms of the disappearance of androgen receptors from the nucleus and the expression of androgen-repressed genes including the proto-oncogenes, c-fos and c-myc, and the cell death gene, TRPM-2; all of which are constitutively active in recurrent AI tumor cells. Overall, our results indicate: (1) the tumor mass consists mainly of differentiated cells; (2) stem cells initially are AD but at most the killing effect of androgen-withdrawal will be limited to 2–3 logarithms before compensatory adaptive mechanisms supervene; and (3) progression of stem cells to an AI state, in which they are resistant to the killing effects of cell death genes, might be prevented by the inhibition of androgen-repressed adaptive mechanisms which come into play when androgens are withdrawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号