首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

2.
Healthy wetlands play a significant role in climate change mitigation by storing carbon that would otherwise contribute to global warming, leading to the reduction of water and food resources as well as more extreme weather phenomena. Investigating the magnitude of carbon storage potential of different freshwater wetland systems using multiple ecological indicators at varying spatial scales provides insight and justification for selective wetland restoration and conservation initiatives. We provide a holistic accounting of total carbon values for 193 wetland sites, integrating existing carbon algorithms to rapidly assess each of the following carbon pools: above-ground, below-ground, soil, woody debris, shrub cover, and herbaceous cover. Aspects of soil, vegetation, and ecosystem characteristics and stressors were measured to obtain an overall understanding of the ecosystems ability to store carbon (long-term) along a gradient of human disturbance. Based on a review of the literature, methods were prioritized based on the initial data available from field measurements as well as their practicality and ease in replicating the process in the future. Lacustrine human impounded (88.7?±?18.0 tC/ha), riverine beaver impounded (116.2?±?29.4 tC/ha), riverine upper perennial (163.3?±?11.8 tC/ha), riverine lower perennial (199.2?±?24.7 tC/ha), riverine headwater complex (159.5?±?22.2 tC/ha), perennial/seasonal depression (269.6?±?42.4 tC/ha), and slope (162.2?±?14.6 tC/ha) wetland types were compared. Overall results showed moderate variability (9.33–835.95 tC/ha) for total carbon storage values across the wetland types, with an average total carbon storage of 174.6?±?8.8 tC/ha for all wetlands. Results show that carbon storage was significantly higher (p?=?0.002) in least disturbed wetland sites. Apart from perennial/seasonal depression wetlands, all reference standard wetlands had greater carbon storage, less disturbance impact, and a greater extent of forest cover than non-reference wetlands. Carbon storage values calculated were comparable to published literature.  相似文献   

3.
Wetlands can store large quantities of carbon (C) and are considered key sites for C sequestration. However, the C sequestration potential of wetlands is spatially and temporally variable, and depends on processes associated with C production, preservation and export. In this study, we assess the soil C sources and processes responsible for C sequestration of riverine wetlands (mangroves, peat swamp forest and marsh) of La Encrucijada Biosphere Reserve (LEBR, Mexican south Pacific coast). We analysed soil C and nitrogen (N) concentrations and isotopes (δ13C and δ15N) from cores dated from the last century. We compared a range of mangrove forests in different geomorphological settings (upriver and downriver) and across a gradient from fringe to interior forests. Sources and processes related to C storage differ greatly among riverine wetlands of the Reserve. In the peat swamp forest and marsh, the soil C experienced large changes in the past century, probably due to soil decomposition, changes in plant community composition, and/or changes in C sources. In the mangroves, the dominant process for C accumulation was the burial of in situ production. The C buried in mangroves has changed little in the past 100 years, suggesting that production has been fairly constant and/or that decomposition rates in the soil are slow. Mangrove forests of LEBR, regardless of geomorphological setting, can preserve very uniform soil N and C for a century or more, consistent with efficient C storage.  相似文献   

4.
Although coastal vegetated ecosystems are widely recognised as important sites of long-term carbon (C) storage, substantial spatial variability exists in quantifications of these ‘blue C’ stocks. To better understand the factors behind this variability we investigate the relative importance of geomorphic and vegetation attributes to variability in the belowground C stocks of saltmarshes in New South Wales (NSW), southeast Australia. Based on the analysis of over 140 sediment cores, we report mean C stocks in the surface metre of sediments (mean ± SE = 164.45 ± 8.74 Mg C ha?1) comparable to global datasets. Depth-integrated stocks (0–100 cm) were more than two times higher in fluvial (226.09 ± 12.37 Mg C ha?1) relative to marine (104.54 ± 7.11) geomorphic sites, but did not vary overall between rush and non-rush vegetation structures. More specifically, sediment grain size was a key predictor of C density, which we attribute to the enhanced C preservation capacity of fine sediments and/or the input of stable allochthonous C to predominantly fine-grained, fluvial sites. Although C density decreased significantly with sediment depth in both geomorphic settings, the importance of deep C varied substantially between study sites. Despite modest spatial coverage, NSW saltmarshes currently hold approximately 1.2 million tonnes of C in the surface metre of sediment, although more C may have been returned to the atmosphere through habitat loss over the past approximately 200 years. Our findings highlight the suitability of using sedimentary classification to predict blue C hotspots for targeted conservation and management activities to reverse this trend.  相似文献   

5.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

6.
Ecosystems - Mangrove wetlands are some of the most important locations of organic carbon (OC) sequestration and storage in the world on a per area basis. The high stocks of soil OC are driven by...  相似文献   

7.
Carbon budgets of wetland ecosystems in China   总被引:1,自引:0,他引:1  
Wetlands contain a large proportion of carbon (C) in the biosphere and partly affect climate by regulating C cycles of terrestrial ecosystems. China contains Asia's largest wetlands, accounting for about 10% of the global wetland area. Although previous studies attempted to estimate C budget in China's wetlands, uncertainties remain. We conducted a synthesis to estimate C uptake and emission of wetland ecosystems in China using a dataset compiled from published literature. The dataset comprised 193 studies, including 370 sites representing coastal, river, lake and marsh wetlands across China. In addition, C stocks of different wetlands in China were estimated using unbiased data from the China Second Wetlands Survey. The results showed that China's wetlands sequestered 16.87 Pg C (315.76 Mg C/ha), accounting for about 3.8% of C stocks in global wetlands. Net ecosystem productivity, jointly determined by gross primary productivity and ecosystem respiration, exhibited annual C sequestration of 120.23 Tg C. China's wetlands had a total gaseous C loss of 173.20 Tg C per year from soils, including 154.26 Tg CO2‐C and 18.94 Tg CH4‐C emissions. Moreover, C stocks, uptakes and gaseous losses varied with wetland types, and were affected by geographic location and climatic factors (precipitation and temperature). Our results provide better estimation of the C budget in China's wetlands and improve understanding of their contribution to the global C cycle in the context of global climate change.  相似文献   

8.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   

9.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

10.
Structural and functional loss in restored wetland ecosystems   总被引:4,自引:0,他引:4  
Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.  相似文献   

11.
Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate‐mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south‐eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km?2 yr?1 (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km?2 yr?1), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km?2 yr?1 (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming.  相似文献   

12.
High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0–40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0–20 cm depth were up to 120% higher than that of the 21–40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands.  相似文献   

13.
Tropical forest restoration strategies have the potential to accelerate the recovery of the nutrient cycles in degraded lands. Litter production and its decomposition represent the main transfer of organic material and nutrients into the soil substrate. We evaluated litter production, accumulation on the forest floor, and its decomposition under three restoration strategies: plantation (entire area planted with trees), island (trees planted in patches of three different sizes) and control (natural regeneration) plots. We also compared restoration strategies to young secondary forest (7-9 yr). Restoration treatments were established in 50 x 50m plots in June 2004 at six sites in Southern Costa Rica. Planted tree species included two native timber species (Terminalia amazonia and Vochysia guatemalensis) interplanted with two N fixers (Erythrina poeppigiana and Inga edulis). Litter was collected every 15 days between September 2008 and August 2009 in 12 0.25m2 litter traps distributed within each plot; litter that accumulated on the soil surface was collected at four locations (0.25m2 quadrats) within each plot in February and May 2009. Total litter production in plantation (6.3Mg/ha) and secondary forest (7.3Mg/ha) did not differ, but were greater than in islands (3.5Mg/ha) and control (1.4 Mg/ha). Plantation had greatest accumulation of litter on the soil surface (10.6 Mg/ha) as compared to the other treatments (SF = 7.2; I = 6.7; C = 4.9). Secondary forest was the only treatment with a greater annual production of litter than litter accumulation on the soil surface. Carbon storage in litter was similar between plantation and secondary forest, and significantly greater than the other treatments. No differences were found for carbon concentration and storage in the soil among treatments. There was also high variability in the production and accumulation of litter and carbon among sites. Active restoration treatments accelerated the production of litter and carbon storage in comparison to areas under natural recovery. However, the nutrient cycle has not necessarily been restored under these conditions, as high litter accumulation on the soil surface indicates a low decomposition rate, which slows nutrient return to the soil.  相似文献   

14.
We studied responses to alarm calls of sympatric patas (Erythrocebus patas) and vervet (Cercopithecus aethiops) monkeys in relation to habitat structure, with the intention of understanding the relationship between the environment and predator avoidance. Patas and vervet monkeys are phylogenetically closely related and overlap in body size. However, while patas monkeys are restricted to nonriverine habitats at our study site, vervets use both nonriverine and riverine habitats, allowing us to "vary" habitat structure while controlling for effects of group size, composition, and phylogeny. Patas monkeys in the nonriverine habitat responded to mammalian predator alarm calls with a greater variety of responses than did vervets in the riverine habitat, but not when compared with vervets in the nonriverine habitat. Ecological measurements confirm subjective assessments that trees in the riverine habitat are significantly taller and occur at lower densities than trees in the nonriverine habitat. Despite the lower density of trees in the riverine habitat, locomotor behavior of focal animals indicates that canopy cover is significantly greater in the riverine than the nonriverine habitat. Differences in responses to alarm calls by the same groups of vervets in different habitat types, and convergence of vervets with patas in the same habitat type, suggest that habitat type can be a significant source of variation in antipredator behavior of primates.  相似文献   

15.
Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.  相似文献   

16.
Macroinvertebrate composition, abundance and biomass were investigated at four intertidal sites throughout the Robbins Passage wetlands, Tasmania, over a 12-month period, in order to identify differences among and within sites, and to determine whether environmental variables could explain these differences. As this region is the most important shorebird area in Tasmania, we wanted to quantify the potential food source for shorebirds within the wetlands. Thirty-five taxa from 28,928 individuals were identified, with a mean abundance of 6026.6 ind m−2 and biomass of 27.1 gDW m−2. Bivalves and gastropods dominated the assemblage in terms of abundance and biomass (79% and 60%, respectively). There was a significant interaction among tidal level, site and season for invertebrate abundance and diversity, while biomass differed significantly among sites. In general, the mid-intertidal stratum had the greatest invertebrate density and diversity, while the low intertidal stratum had the greatest biomass. Community composition varied among the four sites, with the bivalve Paphies elongata dominating at two of the sites, while gastropods and polychaetes were more abundant at the other sites. Differences in invertebrate composition and abundance could partly be explained by seagrass biomass, i.e., dry mass of seagrass leaves and roots. Areas with seagrass had increased invertebrate abundance and diversity, but mean sediment particle size, % organic carbon and % seagrass cover had no significant effect. These results will assist in the investigation of habitat use by shorebirds and the identification of important shorebird feeding areas within the wetlands. Handling editor: P. Viaroli  相似文献   

17.
Algae have important functional roles in estuarine wetlands. We quantified differences in macroalgal abundance, composition and diversity, and sediment chl a and pheophytin a (pheo a) among three National Wetlands Inventory (NWI) emergent marsh classes in four Oregon estuaries spanning a range of riverine to marine dominance. We also assessed the strength of macroalgal‐vascular plant associations and the degree to which environmental variables correlated with algal community metrics in marsh and woody wetlands. The frequency of occurrence of most macroalgal genera, total benthic macroalgal cover, macroalgal diversity, and sediment chl a content were several times higher in low emergent marsh than in high marsh or palustrine tidal marsh. Conversely, pheo a: chl a ratios were highest in high and palustrine marsh. Attached macroalgae (Fucus and Vaucheria) were strongly associated with plants common at lower tidal elevations such as Sarcocornia perennis and Jaumea carnosa; Ulva (an unattached alga) was not strongly associated with any common low marsh plants. In structural equation models, intertidal elevation was the most influential predictor of macroalgal cover and richness and chl a; light availability and soil salinity played secondary roles. Although common taxa such as Ulva spp. occurred across a broad range of salinities, wetlands with oligohaline soils (salinity < 5) had the lowest macroalgal diversity and lower sediment chl a. These types of baseline data on algal distributions are critical for evaluating the structural and functional impacts of future changes to coastal estuaries including sea‐level rise (SLR), altered salinity dynamics, and habitat modification.  相似文献   

18.
‘Blue carbon’ ecosystems—seagrasses, tidal marshes, and mangroves—serve as dense carbon sinks important for reducing atmospheric greenhouse gas concentrations, yet only recently have stock estimates emerged. We sampled 96 blue carbon ecosystems across the Victorian coastline (southeast Australia) to quantify total sediment stocks, variability across spatial scales, and estimate emissions associated with historical ecosystem loss. Mean sediment organic carbon (Corg) stock (±SE) to a depth of 30 cm was not significantly different between tidal marshes (87.1 ± 4.90 Mg Corg ha?1) and mangroves (65.6 ± 4.17 Mg Corg ha?1), but was significantly lower in seagrasses (24.3 ± 1.82 Mg Corg ha?1). Location (defined as an individual meadow, marsh, or forest) had a stronger relationship with Corg stock than catchment region, suggesting local-scale conditions drive variability of stocks more than regional-scale processes. We estimate over 2.90 million ± 199,000 Mg Corg in the top 30 cm of blue carbon sediments in Victoria (53% in tidal marshes, 36% in seagrasses, and 11% in mangroves) and sequestration rates of 22,700 ± 5510 Mg Corg year?1 (valued at over $AUD1 million ± 245,000 year?1 based on the average price of $AUD12.14 Mg CO2 eq?1 at Australian Emissions Reduction Fund auctions). We estimate ecosystem loss since European settlement may equate to emissions as high as 4.83 million ± 358,000 Mg CO2 equivalents (assuming 90% remineralization of stocks), 98% of which was associated with tidal marsh loss, and what would have been sequestering 9360 ± 2500 Mg Corg year?1. This study is among the first to present a comprehensive comparison of sediment stocks across and within coastal blue carbon ecosystems. We estimate substantial and valuable carbon stocks associated with these ecosystems that have suffered considerable losses in the past and need protection into the future to maintain their role as carbon sinks.  相似文献   

19.
Sediment cores were collected from two sites of the Tagus estuary salt marshes which differed in degree of metal contamination. At each site, six 60-cm-long cores were taken, three from a non-vegetated intertidal zone, and one from each of areas colonized by salt marsh plants, Spartina maritima, Halimione portulacoides and Arthrocnemum fruticosum, respectively. Total concentrations and concentrations in sequential extractions of Zn, Pb, and Cu were determined in several sediment layers. Sediment slices containing most of the roots (5–15-cm depth) were enriched in metals in comparison with other depths in the core and with non-vegetated cores. Additionally, metals in sediment slices with roots were preferentially linked to the residual fraction. These results are evidence that aquatic plant roots can have a strong influence on metal concentration and speciation in sediments. Since metals become immobilized in vegetated sediments, the preservation of salt marshes or the creation of artificial wetlands could be considered as an efficient natural means for maintaining ecosystem health or restoring ecosystem quality.  相似文献   

20.
The storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO2]. Temperate forests represent significant above‐ground carbon (AGC) “sinks” because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above‐ground biomass releasing carbon to the atmosphere, and the long‐term application of different fire‐regimes select for specific plant communities that sequester carbon at different rates. We investigated the latter process by quantifying AGC storage at 104 sites in the Sydney Basin Bioregion, Australia, relative to differences in components of the fire regime: frequency, severity and interfire interval. To predict the potential impacts of future climate change on fire/AGC interactions, we stratified our field sites across gradients of mean annual temperature and precipitation and quantified within‐ and between‐factor interactions between the fire and climate variables. In agreement with previous studies, large trees were the primary AGC sink, accounting for ~70% of carbon at sites. Generalised additive models showed that mean annual temperature was the strongest predictor of AGC storage, with a 54% near‐linear decrease predicted across the 6.1°C temperature range experienced at sites. Mean annual precipitation, fire frequency, fire severity and interfire interval were consistently poor predictors of total above‐ground storage, although there were some significant relationships with component stocks. Our results show resilience of AGC to frequent and severe wildfire and suggest temperature mediated decreases in forest carbon storage under future climate change predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号