首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Mycorrhizal associations are widespread in high‐latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16‐year‐old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest‐tundra ecotone. We also used high‐throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree‐days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near‐significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context‐dependent ways in subarctic ecosystems. Considering the importance of root‐associated fungi for ecosystem carbon balance, these findings could have far‐reaching implications.  相似文献   

2.
3.
4.
5.
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long‐term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed‐effects modeling to examine the sensitivity of growth in a long‐lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi‐decadal biochronology (1952–2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.  相似文献   

6.
The widely distributed temperate grassland species Dactylis glomerata was grown in competition with Ranunculus acris at two different watering regimes and exposed for 20 weeks to eight ozone treatments with mean concentrations ranging from 16.2 to 89.5 ppb, representing pre‐industrial to predicted post‐2100 ozone climates. Measurements of stomatal conductance were used to parameterize ozone flux models for D. glomerata. For the first time, a modification was made to the standard flux model to account for the observed decrease in sensitivity of stomatal conductance to reduced water availability with increasing ozone. Comparison of calculated cumulative ozone flux between the two versions of the model demonstrated that exclusion of the ozone effect on stomatal conductance in the standard flux model led to a large underestimation of ozone fluxes at mid‐ to high‐ozone concentrations. For example, at a mean ozone concentration of 55 ppb (as predicted for many temperate areas in the next few decades), the standard flux model underestimated ozone fluxes in D. glomerata by 30–40% under reduced water availability. Although the modified flux model does not markedly change the flux‐based critical level for D. glomerata, this study indicates that use of the standard flux model to quantify the risk of ozone damage to a widely distributed grassland species such as D. glomerata in areas where high ozone concentrations and reduced soil moisture coincide could lead to an underestimation of effects. Thus, this study has shown that under predicted future climate change and ozone scenarios, ozone effects on vegetation may be even greater than previously predicted in the drier areas of the world.  相似文献   

7.
Marine ecosystems, particularly in high‐latitude regions such as the Arctic, have been significantly affected by human activities and contributions to climate change. Evaluating how fish populations responded to past changes in their environment is helpful for evaluating their future patterns, but is often hindered by the lack of long‐term biological data available. Using otolith increments of Northeast Arctic cod (Gadus morhua) as a proxy for individual growth, we developed a century‐scale biochronology (1924–2014) based on the measurements of 3,894 fish, which revealed significant variations in cod growth over the last 91 years. We combined mixed‐effect modeling and path analysis to relate these growth variations to selected climate, population and fishing‐related factors. Cod growth was negatively related to cod population size and positively related to capelin population size, one of the most important prey items. This suggests that density‐dependent effects are the main source of growth variability due to competition for resources and cannibalism. Growth was also positively correlated with warming sea temperatures but negatively correlated with the Atlantic Multidecadal Oscillation, suggesting contrasting effects of climate warming at different spatial scales. Fishing pressure had a significant but weak negative direct impact on growth. Additionally, path analysis revealed that the selected growth factors were interrelated. Capelin biomass was positively related to sea temperature and negatively influenced by herring biomass, while cod biomass was mainly driven by fishing mortality. Together, these results give a better understanding of how multiple interacting factors have shaped cod growth throughout a century, both directly and indirectly.  相似文献   

8.
Northwestern China has a wealth of endemic species, which has been hypothesized to be affected by the complex paleoclimatic and paleogeographic history during Quaternary. In this paper, we used Gymnocarpos przewalskii as a model to address the evolutionary history and current population genetic structure of species in northwestern China. We employed two chloroplast DNA fragments (rps16 and psbB‐psbI), one nuclear DNA fragment (ITS), and simple sequence repeat (SSRs) to investigate the spatial genetic pattern of G. przewalskii. High genetic diversity (cpDNA: hS = 0.330, hT = 0.866; ITS: hS = 0.458, hT = 0.872) was identified in almost all populations, and most of the population have private haplotypes. Moreover, multimodal mismatch distributions were observed and estimates of Tajima's D and Fu's FS tests did not identify significantly departures from neutrality, indicating that recent expansion of G. przewalskii was rejected. Thus, we inferred that G. przewalskii survived generally in northwestern China during the Pleistocene. All data together support the genotypes of G. przewalskii into three groups, consistent with their respective geographical distributions in the western regions—Tarim Basin, the central regions—Hami Basin and Hexi Corridor, and the eastern regions—Alxa Desert and Wulate Prairie. Divergence among most lineages of G. przewalskii occurred in the Pleistocene, and the range of potential distributions is associated with glacial cycles. We concluded that climate oscillation during Pleistocene significantly affected the distribution of the species.  相似文献   

9.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

10.
We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change‐induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate‐based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape‐scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh‐to‐mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.  相似文献   

11.
Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth.  相似文献   

12.
Populations may potentially respond to climate change in various ways including moving to new areas or alternatively staying where they are and adapting as conditions shift. Traditional laboratory and mesocosm experiments last days to weeks and thus only give a limited picture of thermal adaptation, whereas ocean warming occurring over decades allows the potential for selection of new strains better adapted to warmer conditions. Evidence for adaptation in natural systems is equivocal. We used a 50‐year time series comprising of 117 056 samples in the NE Atlantic, to quantify the abundance and distribution of two particularly important and abundant members of the ocean plankton (copepods of the genus Calanus) that play a key trophic role for fisheries. Abundance of C. finmarchicus, a cold‐water species, and C. helgolandicus, a warm‐water species, were negatively and positively related to sea surface temperature (SST) respectively. However, the abundance vs. SST relationships for neither species changed over time in a manner consistent with thermal adaptation. Accompanying the lack of evidence for thermal adaptation there has been an unabated range contraction for C. finmarchicus and range expansion for C. helgolandicus. Our evidence suggests that thermal adaptation has not mitigated the impacts of ocean warming for dramatic range changes of these key species and points to continued dramatic climate induced changes in the biology of the oceans.  相似文献   

13.
14.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

15.
It has been hypothesized that species occurring in the eastern and the western Qinghai–Tibet Plateau (QTP) responded differently to climate changes during the Pleistocene. Here, we test this hypothesis by phylogeographic analysis of two sister species, Allium cyathophorum and A. spicata. We sequenced two chloroplast DNA (cpDNA) fragments (accD‐psaI and the rpl16 intron) of 150 individuals, and the nuclear (ITS) region of 114 individuals, from 19 populations throughout the distributional ranges of these species. The divergence between the two species was dated at 779 ‐ 714 thousand years before the present and was likely initiated by the most major glaciation in the QTP. Analysis of chlorotype diversity showed that A. spicata, the species occurring in the western QTP, contains much lower genetic diversity (0.25) than A. cyathophorum (0.93), which is distributed in the eastern QTP. Moreover, multiple independent tests suggested that the A. spicata population had expanded recently, while no such expansion was detected in A. cyathophorum, indicating a contrasting pattern of responses to Pleistocene climate changes. These findings highlight the importance of geographical topography in determining how species responded to the climate changes that took place in the QTP during the Pleistocene.  相似文献   

16.
用树木年代学方法研究了近50年来气候变化对长白山自然保护区两种广泛分布的重要乔木树种红松(Pinus koraiensis)和鱼鳞云杉(Picea jezoensis var. komarovii)分布上限树木径向生长的影响, 发现红松年轮宽度具有与温度升高相一致的趋势, 而鱼鳞云杉年轮宽度则出现随温度升高而下降的“分离现象”。对水热条件的正响应是分布上限红松年表与温度保持一致的关键: 生长季的温度和降水的增加对上限红松的生长有促进作用, 且二者对树木生长的有利效应有相互促进的现象; 生长季的延长也有利于红松的生长。升温导致的水分胁迫是造成上限分布的鱼鳞云杉年轮宽度与温度变化趋势相反的重要因素: 分布上限的鱼鳞云杉年表与大多数温度指标均呈负相关关系; 随着温度升高, 年表与年降水量尤其是春季降水量的相关性逐渐由负转正; 各月的高温以及生长季中后期的少雨是形成上限鱼鳞云杉窄轮的主要气候因素, 而较低的各月温度以及生长季后期充足的降水则有利于上限鱼鳞云杉的生长; 此外, 生长季长度没有变化也可能是造成鱼鳞云杉年表序列对温度变化敏感性下降的重要因素。  相似文献   

17.
Conservation of the local genetic variation and evolutionary integrity of economically and ecologically important trees is a key aspect of studies involving forest genetics, and a population demographic history of the target species provides valuable information for this purpose. Here, the genetic structure of 48 populations of Betula maximowicziana was assessed using 12 expressed sequence tag–simple sequence repeat (EST‐SSR) markers. Genetic diversity was lower in northern populations than southern ones and structure analysis revealed three groups: northern and southern clusters and an admixed group. Eleven more genomic‐SSR loci were added and the demographic history of these three groups was inferred by approximate Bayesian computation (ABC). The ABC revealed that a simple split scenario was much more likely than isolation with admixture, suggesting that the admixture‐like structure detected in this species was due to ancestral polymorphisms. The ABC analysis suggested that the population growth and divergence of the three groups occurred 96 800 (95% CI, 20 500–599 000) and 28 300 (95% CI, 8700–98 400) years ago, respectively. We need to be aware of several sources of uncertainty in the inference such as assumptions about the generation time, overlapping of generations, confidence intervals of the estimated parameters and the assumed model in the ABC. However, the results of the ABC together with the model‐based maps of reconstructed past species distribution and palaeoecological data suggested that the modern genetic structure of B. maximowicziana originated prior to the last glacial maximum (LGM) and that some populations survived in the northern range even during the LGM.  相似文献   

18.
Morphometrics and growth of the critically endangered Saimaa ringed seal (Pusa hispida saimensis), which inhabits a freshwater lake in Finland were studied using data from 344 carcasses. This study presents the first detailed information on ringed seal pup growth and body condition from birth to the age of one year. Newborn pups were on average 68 cm long and weighed 5 kg. Pups attained the majority of their first year growth during the nursing period. Body condition and growth declined after weaning, but pups recovered from postweaning nutritional deprivation at the age of 8 mo. The seals achieved their maximum body length, girth, and mandible size around the age of 4 yr, and asymptotic body mass two years later. Baculum growth indicated that males reached sexual maturity at age 5–6 yr. The Saimaa ringed seals' asymptotic body length and mass were 132 cm and 59 kg, respectively, which is similar to medium sized marine ringed seals. Saimaa ringed seals' survival to adulthood is extremely low due to high bycatch mortality; furthermore climate change may hamper pup growth and elevate mortality. Therefore we recommend continuation of fishing closures to improve pup survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号