首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current global scale land‐change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land‐use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human‐environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi‐)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land‐use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land‐change models that include the human drivers of land change are best parameterized at sub‐global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions.  相似文献   

2.
Large‐scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine‐scale processes including land use and land cover change into a large‐scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1‐km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.  相似文献   

3.
To meet rising demands for agricultural products, existing agricultural lands must either produce more or expand in area. Yield gaps (YGs)—the difference between current and potential yield of agricultural systems—indicate the ability to increase output while holding land area constant. Here, we assess YGs in global grazed‐only permanent pasture lands using a climate binning approach. We create a snapshot of circa 2000 empirical yields for meat and milk production from cattle, sheep, and goats by sorting pastures into climate bins defined by total annual precipitation and growing degree‐days. We then estimate YGs from intra‐bin yield comparisons. We evaluate YG patterns across three FAO definitions of grazed livestock agroecosystems (arid, humid, and temperate), and groups of animal production systems that vary in animal types and animal products. For all subcategories of grazed‐only permanent pasture assessed, we find potential to increase productivity several‐fold over current levels. However, because productivity of grazed pasture systems is generally low, even large relative increases in yield translated to small absolute gains in global protein production. In our dataset, milk‐focused production systems were found to be seven times as productive as meat‐focused production systems regardless of animal type, while cattle were four times as productive as sheep and goats regardless of animal output type. Sustainable intensification of pasture is most promising for local development, where large relative increases in production can substantially increase incomes or “spare” large amounts of land for other uses. Our results motivate the need for further studies to target agroecological and economic limitations on productivity to improve YG estimates and identify sustainable pathways toward intensification.  相似文献   

4.
Land‐use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land‐use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970–2000 period and projections of other global and regional land change models.  相似文献   

5.
Maps of continental‐scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time‐scales. User groups with an interest in past land cover include the climate modelling community, socio‐ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan‐European land cover change for the period 9000 bp to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 bp through reduction in broad‐leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan‐European scale moved outside the range of previous background variability from 4000 bp onwards. From 2200 bp land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 bp . Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover‐climate interactions, and the origins of the modern cultural landscape.  相似文献   

6.
Milk and beef production cause 9% of global greenhouse gas (GHG) emissions. Previous life cycle assessment (LCA) studies have shown that dairy intensification reduces the carbon footprint of milk by increasing animal productivity and feed conversion efficiency. None of these studies simultaneously evaluated indirect GHG effects incurred via teleconnections with expansion of feed crop production and replacement suckler‐beef production. We applied consequential LCA to incorporate these effects into GHG mitigation calculations for intensification scenarios among grazing‐based dairy farms in an industrialized country (UK), in which milk production shifts from average to intensive farm typologies, involving higher milk yields per cow and more maize and concentrate feed in cattle diets. Attributional LCA indicated a reduction of up to 0.10 kg CO2e kg?1 milk following intensification, reflecting improved feed conversion efficiency. However, consequential LCA indicated that land use change associated with increased demand for maize and concentrate feed, plus additional suckler‐beef production to replace reduced dairy‐beef output, significantly increased GHG emissions following intensification. International displacement of replacement suckler‐beef production to the “global beef frontier” in Brazil resulted in small GHG savings for the UK GHG inventory, but contributed to a net increase in international GHG emissions equivalent to 0.63 kg CO2e kg?1 milk. Use of spared dairy grassland for intensive beef production can lead to net GHG mitigation by replacing extensive beef production, enabling afforestation on larger areas of lower quality grassland, or by avoiding expansion of international (Brazilian) beef production. We recommend that LCA boundaries are expanded when evaluating livestock intensification pathways, to avoid potentially misleading conclusions being drawn from “snapshot” carbon footprints. We conclude that dairy intensification in industrialized countries can lead to significant international carbon leakage, and only achieves GHG mitigation when spared dairy grassland is used to intensify beef production, freeing up larger areas for afforestation.  相似文献   

7.
This landscape-scale study combines analysis of multitemporal satellite imagery spanning 30 years and information from field studies extending over 25 years to assess the extent and causes of land use and land cover change in the Loitokitok area, southeast Kajiado District, Kenya. Rain fed and irrigated agriculture, livestock herding, and wildlife and tourism have all experienced rapid change in their structure, extent, and interactions over the past 30 years in response to a variety of economic, cultural, political, institutional, and demographic processes. Land use patterns and processes are explored through a complementary application of interpretation of satellite imagery and case study analysis that explicitly addresses the local–national spatial scale over a time frame appropriate to the identification of fundamental causal processes. The results illustrate that this combination provides an effective basis for describing and explaining patterns of land use and land cover change and their root causes.  相似文献   

8.
The need for more sustainable production and consumption of animal source food (ASF) is central to the achievement of the sustainable development goals: within this context, wise use of land is a core challenge and concern. A key question in feeding the future world is: how much ASF should we eat? We demonstrate that livestock raised under the circular economy concept could provide a significant, nonnegligible part (9–23 g/per capita) of our daily protein needs (~50–60 g/per capita). This livestock then would not consume human‐edible biomass, such as grains, but mainly convert leftovers from arable land and grass resources into valuable food, implying that production of livestock feed is largely decoupled from arable land. The availability of these biomass streams for livestock then determines the boundaries for livestock production and consumption. Under this concept, the competition for land for feed or food would be minimized and compared to no ASF, including some ASF in the human diet could free up about one quarter of global arable land. Our results also demonstrate that restricted growth in consumption of ASF in Africa and Asia would be feasible under these boundary conditions, while reductions in the rest of the world would be necessary to meet land use sustainability criteria. Managing this expansion and contraction of future consumption of ASF is essential for achieving sustainable nutrition security.  相似文献   

9.
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land‐cover and land‐use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land‐use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land‐use planning, implying huge efficiency gains through international cooperation. However, global‐scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct “winners and losers” in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land‐use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land‐use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land‐use conflicts, may offer an effective, yet politically feasible, avenue to better reconcile future trade‐offs between agriculture and conservation. The efficiency gains of optimization remained robust when assuming that yields could only be increased to 80% of their potential. Our results highlight the need to better integrate real‐world governance, political and economic challenges into sustainable development and global change mitigation research.  相似文献   

10.
Human modification of the landscape potentially affects exchanges of energy and water between the terrestrial biosphere and the atmosphere. This study develops a possible scenario for land cover in the year 2050 based on results from the IMAGE 2 (Integrated Model to Assess the Greenhouse Effect) model, which projects land‐cover changes in response to demographic and economic activity. We use the land‐cover scenario as a surface boundary condition in a biophysically‐based land‐surface model coupled to a general circulation model for a 15‐years simulation with prescribed sea surface temperature and compare with a control run using current land cover. To assess the sensitivity of climate to anthropogenic land‐cover change relative to the sensitivity to decadal‐scale interannual variations in vegetation density, we also carry out two additional simulations using observed normalized difference vegetation index (NDVI) from relatively low (1982–83) and high (1989–90) years to describe the seasonal phenology of the vegetation. In the past several centuries, large‐scale land‐cover change occurred primarily in temperate latitudes through conversion of forests and grassland to highly productive cropland and pasture. Several studies in the literature indicate that past changes in surface climate resulting from this conversion had a cooling effect owing to changes in vegetation morphology (increased albedo). In contrast, this study indicates that future land‐cover change, likely to occur predominantly in the tropics and subtropics, has a warming effect governed by physiological rather than morphological mechanisms. The physiological mechanism is to reduce carbon assimilation and consequently latent relative to sensible heat flux resulting in surface temperature increases up to 2 °C and drier hydrologic conditions in locations where land cover was altered in the experiment. In addition, in contrast to an observed decrease in diurnal temperature range (DTR) over land expected with greenhouse warming, results here suggest that future land‐cover conversion in tropics could increase the DTR resulting from decreased evaporative cooling during the daytime. For grid cells with altered land cover, the sensitivity of surface temperature to future anthropogenic land‐cover change is generally within the range induced by decadal‐scale interannual variability in vegetation density in temperate latitudes but up to 1.5 °C warmer in the tropics.  相似文献   

11.

Background, Aims and Scope  

The actual land use consequences of crop consumption are not very well reflected in existing life cycle inventories. The state of the art is that such inventories typically include data from crop production in the country in which the crop is produced, and consequently the inventories do not necessarily consider the land ultimately affected in the systems being studied. The aims of this study are to analyse the mechanisms influencing the long-term land use consequences of changes in crop demand and to propose a methodological framework for identifying these consequences within a global scope.  相似文献   

12.
Understanding long‐term human‐environment interactions requires historical reconstruction of past land‐cover changes. The objective of this study is to reconstruct past land‐use and land‐cover changes in a rural municipality of the Belgian Ardennes over the last 250 years. Two approaches were compared. The first approach produced backward projections based on a mechanistic model which computes the demand for different land uses under the assumption of an equilibrium between the production and consumption of resources. The second approach involved using a series of historical maps to extract directly land‐use areas. A stochastic Markov chain model was also used to project backward missing land‐cover data in the time series. The consistency between the results obtained with the different approaches suggests that land‐use area can be successfully reconstructed on the basis of the mechanistic model, under conditions of a subsistence farming system and a closed economy. Land‐use/cover changes in the Belgian Ardennes from 1775 to 1929 were more driven by the interventionist measures of the Belgian government and by technological progress than by the ‘pressure’ of the growing population and livestock. Thanks to agricultural intensification, a decrease in land under human use was supporting increasing human and livestock populations from 1846 to 1880. Reforestation has accelerated since the mid‐19th century. This case study illustrates the highly dynamic and non‐linear character of land‐use change trajectories over long time periods and their strong interactions with the history of societies.  相似文献   

13.
Referee: Dr. Charles A. S. Hall, Department of Environmental Studies, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 Biofuel production systems are sometimes claimed to be able to fill in for future fossil fuel shortages as well as to decrease carbon dioxide emissions and global warming. As such, they are often promoted as a “green” alternative to fossil fuels. I present a comprehensive, system-based case study of biofuel production from maize or corn (Zea mays L.) and evaluate it critically in this review. The case study is taken as an example of the comprehensive approach that I suggest for any energy crop. I conclude that the biofuel option on a large scale is not a viable alternative based on economic, energy and eMergy (amount of available energy [exergy] of one form [usually solar] that is directly or indirectly required to provide a given flow or storage of exergy or matter) analyses of the case study data and estimated possible improvement of yield and efficiency. This is true for developed countries due to their huge energy demand compared with what biofuel options are able to supply as well as for developing countries due to the low yield of their agriculture and competition for land and water for food production. However, biofuels may contribute to optimizing the energy and resource balance of agricultural, livestock, or industrial production systems at an appropriate scale. I present a proposal to integrate ethanol production with industrial activities within a “zero emission framework” as a suggestion for optimization strategies capable of making the biofuel option more sustainable and profitable in those cases where it is appropriate.  相似文献   

14.
Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high‐resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel‐wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative “downstream” (map‐based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps’ spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ~45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National‐scale maps derived from higher‐resolution imagery were most accurate, followed by multi‐map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland‐adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%–500% greater than in input cropland maps, but ~40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users.  相似文献   

15.
Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land‐use change and project potential future emissions. The novel Kaya–Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2‐eq. yr?1 and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop‐ and livestock‐production, respectively. Except for the energy‐use component of farming, emissions from all sources have increased less than agricultural production. Our projected business‐as‐usual range suggests that emissions may be further decoupled by 20–55% giving absolute agricultural emissions of 8.2–14.5 Pg CO2‐eq. yr?1 by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food‐system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.  相似文献   

16.
We model the carbon balance of European croplands between 1901 and 2000 in response to land use and management changes. The process‐based ORCHIDEE‐STICS model is applied here in a spatially explicit framework. We reconstructed land cover changes, together with an idealized history of agro‐technology. These management parameters include the treatment of straw and stubble residues, application of mineral fertilizers, improvement of cultivar species and tillage. The model is integrated for wheat and maize during the period 1901–2000 forced by climate each 1/2‐hour, and by atmospheric CO2, land cover change and agro‐technology each year. Several tests are performed to identify the most sensitive agro‐technological parameters that control the net biome productivity (NBP) in the 1990s, with NBP equaling for croplands the soil C balance. The current NBP is a small sink of 0.16 t C ha?1 yr?1. The value of NBP per unit area reflects past and current management, and to a minor extent the shrinking areas of arable land consecutive to abandonment during the 20th Century. The uncertainty associated with NBP is large, with a 1‐sigma error of 0.18 t C ha?1 yr?1 obtained from a qualitative, but comprehensive budget of various error terms. The NBP uncertainty is dominated by unknown historical agro‐technology changes (47%) and model structure (27%), with error in climate forcing playing a minor role. A major improvement to the framework would consist in using a larger number of representative crops. The uncertainty of historical land‐use change derived from three different reconstructions, has a surprisingly small effect on NBP (0.01 t C ha?1 yr?1) because cropland area remained stable during the past 20 years in all the tested land use forcing datasets. Regional cross‐validation of modeled NBP against soil C inventory measurements shows that our results are consistent with observations, within the uncertainties of both inventories and model. Our estimation of cropland NBP is however likely to be biased towards a sink, given that inventory data from different regions consistently indicate a small source whereas we model a small sink.  相似文献   

17.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century.  相似文献   

18.
Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio‐temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an ‘intrinsic property’ to SOM persistence as an ‘ecosystem interaction’. We present a soil profile, or pedon‐explicit, ecosystem‐scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem‐scale drivers are integrated with pedon‐scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above‐ and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics—improved representation of plant‐derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage—and how this can be combined with robust and efficient soil monitoring.  相似文献   

19.
Historic land‐cover/use change is important for studies on climate change, soil carbon, and biodiversity assessments. Available reconstructions focus on the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). This leads to a serious underestimation of land‐cover/use dynamics with impacts on the biogeochemical and environmental assessments based on these reconstructions. In this study, we quantified to what extent land‐cover/use reconstructions underestimate land‐cover/use changes in Europe for the 1900–2010 period by accounting for net changes only. We empirically analyzed available historic land‐change data, quantified their uncertainty, corrected for spatial‐temporal effects and identified underlying processes causing differences between gross and net changes. Gross changes varied for different land classes (largest for forest and grassland) and led to two to four times the amount of net changes. We applied the empirical results of gross change quantities in a spatially explicit reconstruction of historic land change to reconstruct gross changes for the EU27 plus Switzerland at 1 km spatial resolution between 1950 and 2010. In addition, the reconstruction was extended back to 1900 to explore the effects of accounting for gross changes on longer time scales. We created a land‐change reconstruction that only accounted for net changes for comparison. Our two model outputs were compared with five commonly used global reconstructions for the same period and area. In our reconstruction, gross changes led in total to a 56% area change (ca. 0.5% yr?1) between 1900 and 2010 and cover twice the area of net changes. All global reconstructions used for comparison estimated fewer changes than our gross change reconstruction. Main land‐change processes were cropland/grassland dynamics and afforestation, and also deforestation and urbanization.  相似文献   

20.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号