首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coral reef ecosystems are under increasing pressure by multiple stressors that degrade reef condition and function. Although improved management systems have yielded benefits in many regions, broad‐scale declines continue and additional practical and effective solutions for reef conservation and management are urgently needed. Ecological interventions to assist or enhance ecosystem recovery are standard practice in many terrestrial management regimes, and they are now increasingly being implemented in the marine environment. Intervention activities in coral reef systems include the control of coral predators (e.g. crown‐of‐thorns starfish), substrate modification, the creation of artificial habitats and the cultivation, transplantation, and assisted recruitment of corals. On many coastal reefs, corals face competition and overgrowth by fleshy macroalgae whose abundance may be elevated due to acute disturbance events, chronic nutrient enrichment, and reduced herbivory. Active macroalgae removal has been proposed and trialed as a management tool to reduce competition between algae and corals and provide space for coral recruitment, in the hope of restoring the spatial dominance of habitat‐forming corals. However, macroalgae removal has received little formal attention as a method of reef restoration. This review synthesizes available knowledge of the ecological role of macroalgae on coral reefs and the potential benefits and risks associated with their active removal.  相似文献   

2.
陈飚  余克服 《生态学报》2022,42(21):8531-8543
病毒对珊瑚礁生态系统中的生物进化、生物地球化学循环、珊瑚疾病等方面具有重要的生态影响。随着珊瑚礁的全球性退化,病毒在珊瑚礁生态系统中的功能与危害日益显现。综述了珊瑚礁生态系统中病毒的研究现状与进展,包括:(1)珊瑚礁病毒的多样性与分布特征(水体、宿主、核心病毒组);(2)珊瑚礁病毒的生态功能(感染方式、促进生物进化、生物地球化学循环);(3)珊瑚礁病毒对全球气候变化的响应(热压力、珊瑚疾病)。总体而言,珊瑚礁生态系统具有极高的病毒多样性,所发现的60个科占已知所有病毒科数量的58%。珊瑚的核心病毒组主要由双链DNA病毒、单链DNA病毒、单链逆转录病毒所组成,珊瑚黏液层对病毒具有富集作用。"Piggyback-the-Winner"(依附-胜利)是病毒在珊瑚礁中主要的生物动力学模式,其可通过水平基因迁移的方式促进礁区生物进化。病毒可通过裂解细菌与浮游藻类的途径参与珊瑚礁的生物地球化学循环,尤其是碳循环与氮循环过程。此外,病毒还具有介导珊瑚热白化与直接引发珊瑚疾病的能力,这会影响珊瑚礁生态系统应对气候变化的适应性与恢复力。基于国际上的研究进展综述,结合南海珊瑚礁生态现状提出以下研究方向,以期促进我国珊瑚礁病毒学的发展:(1)开展南海珊瑚礁中病毒多样性的识别及其时-空分布特征研究;(2)探索病毒对南海珊瑚热白化、珊瑚疾病的介导作用及其与气候变化的关系;(3)揭示病毒对南海珊瑚礁生物地球化学循环的贡献。  相似文献   

3.

Anthropogenic climate change is the biggest threat to coral reefs, but reef restoration efforts are buying time for these ecosystems. Lesion recovery, which can be a determinant of colony survival, is particularly important for restored species. Here, we evaluate lesion recovery of 18 genets of Acropora cervicornis from Florida reefs with different thermal regimes in a temperature challenge experiment. Genets demonstrated significant variability in healing, which greatly slowed under heat stress. Only 35% of fragments healed at 31.5 °C compared to 99% at 28 °C. Donor reef thermal regime significantly influenced lesion recovery under heat stress with corals from warmer reefs demonstrating greater healing than corals from cooler reefs, but did not influence recovery under ambient conditions. These findings should encourage practitioners to utilize rapidly healing genets, avoid fragmentation in high temperatures, and incorporate assisted relocation by moving corals from warmer to cooler reefs, where they might succeed under future climate conditions.

  相似文献   

4.
Conservation genetics and the resilience of reef-building corals   总被引:1,自引:0,他引:1  
Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.  相似文献   

5.
Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (%) of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI). Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV = 14.2). However, coral reefs face elevated sedimentation rates (up to 1.16 kg/m2d) and low water transparency (less of 5m) generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6%) and algae (up to 29%) confirm the low values in conservation status of coral reefs (MI = 0.5), reflecting a poorly-planned management. Current conditions are the result of "top-down" conservation strategies in Zihuatanejo, as Federal and Municipal authorities do not coordinate, disregard local community in coral reef management, and ignore the intimate relationship between the coastal and marine realms. This work confirms the importance of conservation strategies with a holistic approach, considering both terrestrial and marine ecosystems in coastal areas; and that these initiatives should include local coastal communities in management and decision-taking processes done by government authorities.  相似文献   

6.
Experimental biology of coral reef ecosystems   总被引:1,自引:0,他引:1  
Coral reef ecosystems are at the crossroads. While significant gaps still exist in our understanding of how “normal” reefs work, unprecedented changes in coral reef systems have forced the research community to change its focus from basic research to understand how one of the most diverse ecosystems in the world works to basic research with strong applied implications to alleviate damage, save, or restore coral reef ecosystems. A wide range of stressors on local, regional, and global spatial scales including over fishing, diseases, large-scale disturbance events, global climate change (e.g., ozone depletion, global warming), and over population have all contributed to declines in coral cover or phase shifts in community structure on time scales never observed before. Many of these changes are directly or indirectly related to anthropogenically induced changes in the global support network that affects all ecosystems. This review focuses on some recent advances in the experimental biology of coral reef ecosystems, and in particular scleractinian corals, at all levels of biological organization. Many of the areas of interest and techniques discussed reflect a progression of technological advances in biology and ecology but have found unique and timely application in the field of experimental coral reef biology. The review, by nature, will not be exhaustive and reflects the author's interests to a large degree. Because of the voluminous literature available, an attempt has been made to capture the essential elements and references for each topic discussed.  相似文献   

7.
The global decline of corals has created an urgent need for effective, science‐based methods to augment coral populations and restore important ecosystem functions. To meet this challenge, the field of coral restoration has rapidly evolved over the past decade. However, despite widespread efforts to outplant corals and monitor survivorship, there is a shortage of information on the effects of coral restoration on reef communities or important ecosystem functions. To fill this knowledge gap, we examined the effects of restoration on three major criteria: diversity, community structure, and ecological processes. We conducted surveys of four restored sites in the Florida Keys ranging in restoration effort (500–2,300 corals outplanted) paired with surveys of nearby, unmanipulated control sites. Coral restoration successfully enhanced coral populations, increasing coral cover 4‐fold, but manifested in limited differences in coral and fish communities. Some restored sites had higher abundance of herbivorous fish, rates of herbivory, or more juvenile‐sized corals, but these effects were limited to individual reefs. Damselfish were consistently more abundant at restored compared to control sites. Despite augmenting target coral populations, 3 years of coral restoration has not facilitated many of the positive feedbacks that help reinforce coral success. In a time of increasingly frequent disturbances, it is urgent we hasten the speed at which reefs recover important ecological processes, such as herbivory and nutrient cycling, that make reefs more resistant and resilient if we are to achieve long‐term restoration success.  相似文献   

8.
Natural and anthropogenic catastrophes occurred at the end of the previous and in the beginning of the current centuries at the coral reefs of the World Ocean, and their consequences for the tropical shelf ecosystems have been described based on published data and our own investigations. It has been shown that in recent decades coral populations on reefs of tropical and subtropical regions of the World Ocean have been reduced by 80%, and in some areas have completely vanished. The biodiversity of reef ecosystems has been considerably reduced. The main reason for such changes is a 1-2°C increase in the temperature of surface waters in comparison with the monthly mean temperature in the hot season. The fate of the damaged coral reefs is under discussion. It is thought that in clean waters partially damaged coral reefs can recover, whereas in waters polluted as the result of human activity they collapse. The rate of coral reef restoration depends on the hydrological and hydrochemical conditions, frequency of natural calamities and competitive interrelation of algae and corals on the damaged sites of coral reefs. The nature of competitive interrelation between algae and corals is considered, viz., the dynamics of obliteration of damaged and dead coral colonies by various algal species, mechanisms of competitive interrelation, effects of the environment on the competitive ability of corals and algae, the internal and external conditions for victory in competitive activity. It has been suggested that coral reefs can be restored through temporary transformation into a vegetable reef. In the absence of natural calamities damaged reefs can be clearly restored to their original or altered state over several decades, but only in clean waters.  相似文献   

9.
海洋酸化对珊瑚礁生态系统的影响研究进展   总被引:1,自引:0,他引:1  
张成龙  黄晖  黄良民  刘胜 《生态学报》2012,32(5):1606-1615
目前,大气CO2浓度的升高已导致海水pH值比工业革命前下降了约0.1,海水碳酸盐平衡体系随之变化,进而影响珊瑚礁生态系统的健康。近年来的研究表明海洋酸化导致造礁石珊瑚幼体补充和群落恢复更加困难,造礁石珊瑚和其它造礁生物(Reef-building organisms)钙化率降低甚至溶解,乃至影响珊瑚礁鱼类的生命活动。虽然海洋酸化对造礁石珊瑚光合作用的影响不显著,但珊瑚-虫黄藻共生体系会受到一定影响。建议选择典型海区进行长期系统监测,结合室内与原位模拟试验,从个体、种群、群落到系统不同层面,运用生理学和分子生物学技术,结合生态学研究手段,综合研究珊瑚的相应响应,以期深入认识海洋酸化对珊瑚礁生态系统健康(例如珊瑚白化)的影响及其效应。  相似文献   

10.
Corals create complex reef structures that provide both habitat and food for many fish species. Because of numerous natural and anthropogenic threats, many coral reefs are currently being degraded, endangering the fish assemblages they support. Coral reef restoration, an active ecological management tool, may help reverse some of the current trends in reef degradation through the transplantation of stony corals. Although restoration techniques have been extensively reviewed in relation to coral survival, our understanding of the effects of adding live coral cover and complexity on fishes is in its infancy with a lack of scientifically validated research. This study reviews the limited data on reef restoration and fish assemblages, and complements this with the more extensive understanding of complex interactions between natural reefs and fishes and how this might inform restoration efforts. It also discusses which key fish species or functional groups may promote, facilitate or inhibit restoration efforts and, in turn, how restoration efforts can be optimised to enhance coral fish assemblages. By highlighting critical knowledge gaps in relation to fishes and restoration interactions, the study aims to stimulate research into the role of reef fishes in restoration projects. A greater understanding of the functional roles of reef fishes would also help inform whether restoration projects can return fish assemblages to their natural compositions or whether alternative species compositions develop, and over what timeframe. Although alleviation of local and global reef stressors remains a priority, reef restoration is an important tool; an increased understanding of the interactions between replanted corals and the fishes they support is critical for ensuring its success for people and nature.  相似文献   

11.
Summary The roles of Permian colonial corals in forming organic reefs have not been adequately assessed, although they are common fossils in the Permian strata. It is now known that colonial corals were important contributors to reef framework during the middle and late Permian such as those in South China, northeast Japan, Oman and Thailand. A coral reef occurs in Kanjia-ping, Cili County, Hunan, South China. It is formed by erect and unscathed colonies ofWaagenophyllum growing on top of one anotherin situ to form a baffle and framework. Paleontological data of the Cili coral reef indicates a middle to late Changhsing age (Late Permian), corresponding to thePalaeofusulina zone. The coral reef exposure extends along the inner platform margin striking in E-S direction for nearly 4 km laterally and generally 35 to 57 m thick. The Cili coral reef exhibits a lateral differentiation into three main reef facies; reef core facies, fore-reef facies, and marginal slope facies. The major reef-core facies is well exposed in Shenxian-wan and Guanyin-an sections where it rests on the marginal slope facies. Colonial corals are dispersed and preserved in non-living position easward. Sponges become major stabilizing organisms in the eastern part of Changhsing limestone outcrop in Kanjia-ping, but no read sponge reefs were formed. Coral reefs at Cili County in Human are different distinctly from calcisponge reefs in South China in their palaeogeography, lithofacies development, organic constitutuents, palaeoecology and diagenesis. The Cili coral reef also shows differences in age, depositional facies association, reef organisms and diagenesis from coral reefs in South Kitakami of Japan, Khorat Plateau of Thailand, and Saih Hatat of Oman. Although some sponge reefs and mounds can reach up to the unconformable Permian/Triassic boundary, coral reef at Kanjia-ping, Cili County, is the latest Permian reef known. This reef appears to had been formed in a palaeoenvironment that is different from that of the sponge reefs and provides an example of new and unique Permian reef type in South China, and could help us to: 1) understand the significance of colonial corals in Permian carbonate buildups; 2) evaluate the importance of coral community evolution prior to the collapse of reef ecosystems at the Permian/Triassic boundary; 3) better understand the effects of the biotic extinction events in Palaeotethys realm; 4) look for environmental factors that may have controlled reefs through time and space, and 5) provide valuable data for the study of Permian palaeoclimate and global evolutionary changes of Permian reefs and reef community.  相似文献   

12.
海洋生物礁是由具有造礁能力的海洋生物聚集而成的一种三维礁体结构,其形成改变了海底地貌、增加了不同尺度上的地形复杂性,为其他海洋生物提供了栖息地并维持了生物多样性。近年来,由于自然因素和人为因素影响,海洋生物礁受到了严重威胁,已成为海洋生态保护和修复领域的重要研究对象。综述了海洋生物礁的类型、生态功能及其生态修复的研究进展。根据形成海洋生物礁的优势造礁生物种类,将海洋生物礁分为海藻礁、海绵礁、刺胞动物礁、贝类礁和多毛类礁,其优势造礁生物分别是珊瑚藻和仙掌藻、钙质海绵和硅质海绵、造礁珊瑚、牡蛎、龙介虫。目前国内对海洋生物礁的全面了解相对较少,主要集中在珊瑚礁和牡蛎礁。海洋生物礁的生态功能主要有海岸防护、提供栖息地、净化水体、固碳作用和能量耦合等。全球变暖和海洋酸化等全球气候变化以及海洋污染、破坏性渔业捕捞、海岸工程、水产养殖和敌害生物等自然和人为因素对海洋生物礁构成了严重威胁。海洋生物礁的生态修复方法分为两类:在退化生物礁区投放造礁生物逐渐成礁,投放人工礁体补充造礁生物逐渐成礁。针对海洋生物礁保护和修复的需要,提出下一步应加强海洋造礁生物生态特征、海洋造礁生物种群丧失因素和海洋生物礁保护与...  相似文献   

13.
珊瑚礁生态脆弱性评价——以泰国思仓岛为例   总被引:1,自引:0,他引:1  
珊瑚礁生态系统受到环境变化、人类活动等各种因素的严重威胁,保护珊瑚礁生态系统是目前全球海洋生态保护的热点,对珊瑚礁开展定量的生态脆弱性评估能够为保护管理对策的制定提供重要科学依据。本研究选取泰国思仓岛作为研究区域,结合空间分析技术建立了具有通用性的珊瑚礁生态脆弱性评估方法。基于ESA模型构建了珊瑚礁生态脆弱性综合指数和评价指标体系,系统分析了思仓岛珊瑚礁脆弱性的来源、构成,并直观展现了脆弱性的区域空间分布。结果表明:思仓岛研究区东北侧的珊瑚礁生态脆弱性大于西南侧,当地珊瑚礁的关键影响因子分别为驳船排污、港口码头、水体透明度等。根据脆弱性评价的结果,提出了当地珊瑚礁保护与修复的空间分区管理对策。本研究为印度-太平洋区系珊瑚礁生态脆弱性评价提供了可行的示例,也为中国的珊瑚礁可持续管理研究提供了借鉴和参照。  相似文献   

14.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

15.
Coral reef restoration initiatives are burgeoning in response to the need for novel management strategies to address dramatic global declines in coral cover. However, coral restoration programs typically lack rigor and critical evaluation of their effectiveness. A review of 83 peer‐reviewed papers that used coral transplantation for reef restoration reveals that growth and survival of coral fragments were the most widely used indicators of restoration success, with 88% of studies using these two indicators either solely (55%) or in combination with a limited number of other ecological factors (33%). In 53% of studies, reef condition was monitored for 1 year or less, while only 5% of reefs were monitored for more than 5 years post‐transplantation. These results highlight that coral reef restoration science has focused primarily on short‐term experiments to evaluate the feasibility of techniques for ecological restoration and the initial establishment phase post‐transplantation, rather than on longer‐term outcomes for coral reef communities. Here, we outline 10 socioecological indicators that comprehensively evaluate the effectiveness of coral reef restoration across the four pillars of sustainability (i.e. environmental, sociocultural, governance, and economic contributions to sustainable communities). We recommend that evaluations of the effectiveness of coral restoration programs integrate ecological indicators with sociocultural, economic, and governance considerations. Assessing the efficacy of coral restoration as a tool to support reef resilience will help to guide future efforts and ensure the sustainable maintenance of reef ecosystem goods and services.  相似文献   

16.
Coral reef restoration is an increasingly important part of tropical marine conservation. Information about what motivates coral reef restoration as well as its success and cost is not well understood but is needed to inform restoration decisions. We systematically review and synthesize data from mostly scientific studies published in peer‐reviewed and gray literature on the motivations for coral reef restoration, the variables measured, outcomes reported, the cost per hectare of the restoration project, the survival of restored corals, the duration of the project, and its overall spatial extent depending on the restoration technique employed. The main motivation to restore coral reefs for the projects assessed was to further our ecological knowledge and improve restoration techniques, with coral growth, productivity, and survival being the main variables measured. The median project cost was 400,000 US$/ha (2010 US$), ranging from 6,000 US$/ha for the nursery phase of coral gardening to 4,000,000 US$/ha for substrate addition to build an artificial reef. Restoration projects were mostly of short duration (1–2 years) and over small spatial extents (0.01 ha or 108 m2). Median reported survival of restored corals was 60.9%. Future research to survey practitioners who do not publish their discoveries would complement this work. Our findings and database provide critical data to inform future research in coral reef restoration.  相似文献   

17.
珊瑚礁作为一种典型的海洋生态系统,具有巨大的固碳和储碳潜力。然而,目前对于珊瑚礁的净碳能力(碳释放与碳吸收)仍存在争议,主要归因于珊瑚共生体碳代谢的多样性和复杂性。珊瑚礁在生物钙化、呼吸过程中向大气释放二氧化碳(CO2);但在生物合成和沉积过程中却可以将碳进行固定与埋藏;为此,珊瑚礁的碳源碳汇身份还有待明确。现有部分研究表明,共生体通过碳代谢可以促进珊瑚礁吸收大气中的CO2。此外,珊瑚礁和海岸带蓝碳生态系统通常表现出很强的连通性,珊瑚共生体碳代谢能有效提高海岸带盐沼植被、海草床、海洋浮游植物等生物的碳汇功能。为了加深对珊瑚礁碳源-碳汇功能的理解,综述了珊瑚共生体的碳代谢特征,梳理了共生体中碳的关键生态过程(有机碳的迁移、无机碳的转化、两者的赋存状态),总结了细菌-虫黄藻-病毒在共生体碳代谢中的作用,评述了珊瑚礁碳源-碳汇特征及影响因子。旨在阐明珊瑚共生体碳代谢的关键过程,并基于此寻求有效的珊瑚礁碳增汇技术,形成以碳增量为主的珊瑚保护与修复技术,提升珊瑚礁在蓝碳生态系统中的贡献。  相似文献   

18.
One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef‐building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate‐driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species‐specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony‐scale (1–10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas emissions) interventions for the persistence of functional reef habitats.  相似文献   

19.
SYNOPSIS. Projected global increases in temperature, sea level,storminess and atmospheric carbon dioxide (CO2) are likely tocause changes in reef coral communities which the present humangeneration will view as deleterious. It is likely coral communitytrajectories will be influenced as much by the reduction inintervals between extreme events as the projected increasesin means of environmental parameters such as temperature, atmosphericCO2 and sea-level. Depressed calcification rates in corals causedby reduced aragonite saturation state of water may increasevulnerability of corals to storms. Moreover, reduction in intervalsbetween storms and other extreme events causing mass mortalityin corals (coral predators, diseases, bleaching) are likelyto more frequently "set back" reef coral communities to earlysuccessional stages or alternate states characterized by non-calcifyingbenthos (plants, soft corals, sponges). The greater the areaand the longer the duration of dominance of putative "coral/corallinealgae" zones of coral reefs by non-calcifying stages, the lesswill be the reefs capacity to accrete limestone bulk lockedup in the big skeletal units of late successional stages (i.e.,very large old corals). Averaged over decades to centuries,the effects of such changes on the coral community's carryingcapacity for other biota such as fish are unpredictable. A "shiftingsteady-state mosaic" null model may provide a useful conceptualtool for defining a baseline and tracking changes from thatbaseline through time.  相似文献   

20.
In June, 2002, the government of Dominica requested assistance in evaluating the coral culture and transplantation activities being undertaken by Oceanographic Institute of Dominica (OID), a coral farm culturing both western Atlantic and Indo-Pacific corals for restoration and commercial sales. We assessed the culture facilities of OID, the condition of reefs, potential impacts of coral collection and benefits of coral transplantation. Coral reefs (9 reefs, 3-20 m depth) were characterized by 35 species of scleractinian corals and a live coral cover of 8-35%. Early colonizing, brooders such as Porites astreoides (14.8% of all corals), P. porites (14.8%), Meandrina meandrites (14.7%) and Agaricia agaricites (9.1%) were the most abundant corals, but colonies were mostly small (mean = 25 cm diameter). Montastraea annularis (complex) was the other dominant taxa (20.8% of all corals) and colonies were larger (mean = 70 cm). Corals (pooled species) were missing an average of 20% of their tissue, with a mean of 1.4% recent mortality. Coral diseases affected 6.4% of all colonies, with the highest prevalence at Cabrits West (11.0%), Douglas Bay (12.2%) and Coconut Outer reef (20.7%). White plague and yellow band disease were causing the greatest loss of tissue, especially among M. annularis (complex), with localized impacts from corallivores, overgrowth by macroalgae, storm damage and sedimentation. While the reefs appeared to be undergoing substantial decline, restoration efforts by OlD were unlikely to promote recovery. No Pacific species were identified at OID restoration sites, yet species chosen for transplantation with highest survival included short-lived brooders (Agaricia and Porites) that were abundant in restoration sites, as well as non-reef builders (Palythoa and Erythropodium) that monopolize substrates and overgrow corals. The species of highest value for restoration (massive broadcast spawners) showed low survivorship and unrestored populations of these species were most affected by biotic stressors and human impacts, all of which need to be addressed to enhance survival of outplants. Problems with culture practices at OID, such as high water temperature, adequate light levels and persistent overgrowth by macroalgae could be addressed through simple modifications. Nevertheless, coral disease and other stressors are of major concern to the most important reef builders, as these species are less amenable to restoration, collection could threaten their survival and losses require decades to centuries to replace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号