首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

2.
Diatoms are responsible for a large proportion of global carbon fixation, with the possibility that they may fix more carbon under future levels of high CO2. To determine how increased CO2 concentrations impact the physiology of the diatom Thalassiosira pseudonana Hasle et Heimdal, nitrate‐limited chemostats were used to acclimate cells to a recent past (333 ± 6 μatm) and two projected future concentrations (476 ± 18 μatm, 816 ± 35 μatm) of CO2. Samples were harvested under steady‐state growth conditions after either an abrupt (15–16 generations) or a longer acclimation process (33–57 generations) to increased CO2 concentrations. The use of un‐bubbled chemostat cultures allowed us to calculate the uptake ratio of dissolved inorganic carbon relative to dissolved inorganic nitrogen (DIC:DIN), which was strongly correlated with fCO2 in the shorter acclimations but not in the longer acclimations. Both CO2 treatment and acclimation time significantly affected the DIC:DIN uptake ratio. Chlorophyll a per cell decreased under elevated CO2 and the rates of photosynthesis and respiration decreased significantly under higher levels of CO2. These results suggest that T. pseudonana shifts carbon and energy fluxes in response to high CO2 and that acclimation time has a strong effect on the physiological response.  相似文献   

3.
Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. While short‐term ocean acidification effects on calcification and other properties have been examined in a variety of coccolithophore species, long‐term adaptive responses have scarcely been documented, other than for the single species Emiliania huxleyi. Here, we investigated the effects of ocean acidification on another ecologically important coccolithophore species, Gephyrocapsa oceanica, following 1,000 generations of growth under elevated CO2 conditions (1,000 μatm). High CO2‐selected populations exhibited reduced growth rates and enhanced particulate organic carbon (POC) and nitrogen (PON) production, relative to populations selected under ambient CO2 (400 μatm). Particulate inorganic carbon (PIC) and PIC/POC ratios decreased progressively throughout the selection period in high CO2‐selected cell lines. All of these trait changes persisted when high CO2‐grown populations were moved back to ambient CO2 conditions for about 10 generations. The results suggest that the calcification of some coccolithophores may be more heavily impaired by ocean acidification than previously predicted based on short‐term studies, with potentially large implications for the ocean's carbon cycle under accelerating anthropogenic influences.  相似文献   

4.
Cold-water corals (CWCs) are thought to be particularly vulnerable to ocean acidification (OA) due to increased atmospheric pCO2, because they inhabit deep and cold waters where the aragonite saturation state is naturally low. Several recent studies have evaluated the impact of OA on organism-level physiological processes such as calcification and respiration. However, no studies to date have looked at the impact at the molecular level of gene expression. Here, we report results of a long-term, 8-month experiment to compare the physiological responses of the CWC Desmophyllum dianthus to OA at both the organismal and gene expression levels under two pCO2/pH treatments: ambient pCO2 (460 μatm, pHT = 8.01) and elevated pCO2 (997 μatm, pHT = 7.70). At the organismal level, no significant differences were detected in the calcification and respiration rates of D. dianthus. Conversely, significant differences were recorded in gene expression profiles, which showed an up-regulation of genes involved in cellular stress (HSP70) and immune defence (mannose-binding c-type lectin). Expression of alpha-carbonic anhydrase, a key enzyme involved in the synthesis of coral skeleton, was also significantly up-regulated in corals under elevated pCO2, indicating that D. dianthus was under physiological reconditioning to calcify under these conditions. Thus, gene expression profiles revealed physiological impacts that were not evident at the organismal level. Consequently, understanding the molecular mechanisms behind the physiological processes involved in a coral’s response to elevated pCO2 is critical to assess the ability of CWCs to acclimate or adapt to future OA conditions.  相似文献   

5.
Ocean acidification (OA) may alter the behaviour of sediment‐bound metals, modifying their bioavailability and thus toxicity. We provide the first experimental test of this hypothesis with the amphipod Corophium volutator. Amphipods were exposed to two test sediments, one with relatively high metals concentrations (Σmetals 239 mg kg?1) and a reference sediment with lower contamination (Σmetals 82 mg kg?1) under conditions that mimic current and projected conditions of OA (390–1140 μatm pCO2). Survival and DNA damage was measured in the amphipods, whereas the flux of labile metals was measured in the sediment and water column (WC) using Diffusive Gradients in Thin‐films. The contaminated sediments became more acutely toxic to C. volutator under elevated pCO2 (1140 μatm). There was also a 2.7‐fold increase in DNA damage in amphipods exposed to the contaminated sediment at 750 μatm pCO2, as well as increased DNA damage in organisms exposed to the reference sediment, but only at 1140 μatm pCO2. The projected pCO2 concentrations increased the flux of nickel and zinc to labile states in the WC and pore water. However, the increase in metal flux at elevated pCO2 was equal between the reference and contaminated sediments or, occasionally, greater from reference sediments. Hence, the toxicological interaction between OA and contaminants could not be explained by e ffects of pH on metal speciation. We propose that the additive physiological effects of OA and contaminants will be more important than changes in metal speciation in determining the responses of benthos to contaminated sediments under OA. Our data demonstrate clear potential for near‐future OA to increase the susceptibility of benthic ecosystems to contaminants. Environmental policy should consider contaminants within the context of changing environmental conditions. Specifically, sediment metals guidelines may need to be reevaluated to afford appropriate environmental protection under future conditions of OA.  相似文献   

6.
Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild‐type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild‐type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild‐type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade‐off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2, whilst being deleterious to adult oysters.  相似文献   

7.
Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 μatm) or future CO2 levels predicted for the year 2100 (900 μatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2. High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.  相似文献   

8.
Rising atmospheric CO2 and ocean acidification are fundamentally altering conditions for life of all marine organisms, including phytoplankton. Differences in CO2 related physiology between major phytoplankton taxa lead to differences in their ability to take up and utilize CO2. These differences may cause predictable shifts in the composition of marine phytoplankton communities in response to rising atmospheric CO2. We report an experiment in which seven species of marine phytoplankton, belonging to four major taxonomic groups (cyanobacteria, chlorophytes, diatoms, and coccolithophores), were grown at both ambient (500 μatm) and future (1,000 μatm) CO2 levels. These phytoplankton were grown as individual species, as cultures of pairs of species and as a community assemblage of all seven species in two culture regimes (high‐nitrogen batch cultures and lower‐nitrogen semicontinuous cultures, although not under nitrogen limitation). All phytoplankton species tested in this study increased their growth rates under elevated CO2 independent of the culture regime. We also find that, despite species‐specific variation in growth response to high CO2, the identity of major taxonomic groups provides a good prediction of changes in population growth and competitive ability under high CO2. The CO2‐induced growth response is a good predictor of CO2‐induced changes in competition (R2 > .93) and community composition (R2 > .73). This study suggests that it may be possible to infer how marine phytoplankton communities respond to rising CO2 levels from the knowledge of the physiology of major taxonomic groups, but that these predictions may require further characterization of these traits across a diversity of growth conditions. These findings must be validated in the context of limitation by other nutrients. Also, in natural communities of phytoplankton, numerous other factors that may all respond to changes in CO2, including nitrogen fixation, grazing, and variation in the limiting resource will likely complicate this prediction.  相似文献   

9.
The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non‐calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south‐eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pHT 7.20, extreme OA predicted for 2300; pHT 7.65, OA predicted for 2100; pHT 8.01, ambient pH; and pHT 8.40, pre‐industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pHT (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pHT (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pHT treatments, except for U. pinnatifida at pHT 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pHT treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA.  相似文献   

10.
Impacts of rising atmospheric CO2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii, the effects of moderate and high natural solar radiation combined with either ambient or future pCO2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (Fv/Fm) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom‐forming Antarctic coastal diatoms might increase carbon contents under future pCO2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO2 sequestration potential of diatom communities in the future coastal Southern Ocean.  相似文献   

11.
Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species‐specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT = 8.0/pCO2 ≈ 480 μatm to pHT = 6.5/pCO2 ≈ 20 000 μatm) covering present (from pHT 8.7 to 7.6), projected near‐future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT ≥ 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT ≤ 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness.  相似文献   

12.
Ocean acidification (OA) caused by anthropogenic CO2 emission is projected for thousands of years to come, and significant effects are predicted for many marine organisms. While significant evolutionary responses are expected during such persistent environmental change, most studies consider only short‐term effects. Little is known about the transgenerational effects of parental environments or natural selection on the capacity of populations to counter detrimental OA effects. In this study, six laboratory populations of the calanoid copepod Pseudocalanus acuspes were established at three different CO2 partial pressures (pCO2 of 400, 900 and 1550 μatm) and grown for two generations at these conditions. Our results show evidence of alleviation of OA effects as a result of transgenerational effects in P. acuspes. Second generation adults showed a 29% decrease in fecundity at 900 μatm CO2 compared to 400 μatm CO2. This was accompanied by a 10% increase in metabolic rate indicative of metabolic stress. Reciprocal transplant tests demonstrated that this effect was reversible and the expression of phenotypic plasticity. Furthermore, these tests showed that at a pCO2 exceeding the natural range experienced by P. acuspes (1550 μatm), fecundity would have decreased by as much as 67% compared to at 400 μatm CO2 as a result of this plasticity. However, transgenerational effects partly reduced OA effects so that the loss of fecundity remained at a level comparable to that at 900 μatm CO2. This also relieved the copepods from metabolic stress, and respiration rates were lower than at 900 μatm CO2. These results highlight the importance of tests for transgenerational effects to avoid overestimation of the effects of OA.  相似文献   

13.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   

14.
Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol m−2 s−1, LL; 200 µmol m−2 s−1, ML; 460 µmol m−2 s−1, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12–18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv′/Fm′) decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.  相似文献   

15.
Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom‐forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180–1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane‐inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species‐specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2‐dependent contribution of HCO3? uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2‐independent carbonic anhydrase activity. Comparing both species, a general trade‐off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2.  相似文献   

16.
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass.  相似文献   

17.
Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 μatm) and high CO2 (1000 μatm) conditions at limiting (10 μmol L−1) or enriched (110 μmol L−1) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.  相似文献   

18.
Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long‐term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2, regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2, irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus.  相似文献   

19.
20.
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold‐water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold‐water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO1058 μatm, Ωara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO448 μatm, Ωara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2879 μatm, Ωara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold‐water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号