共查询到20条相似文献,搜索用时 15 毫秒
1.
半干旱区春小麦生长系统的人工神经网络模型与产量预测 总被引:1,自引:0,他引:1
以半干旱区春小麦生长系统为研究对象。探讨了作物生长系统中水分、土壤养分等生态因子的时空变化特征及春小麦产量形成机制,应用人工神经网络方法建立了半干旱区春小麦生长系统的产量随环境因子变化的神经网络模型,并与传统的CTM模型进行了比较。模拟结果表明,人工神经网络模型可适用于半干旱区春小麦生长系统产量随环境因子变化规律描述,且优于传统模型,从而为春小麦产量预测提供了新的途径,也为作物生态系统的人工调控提供了新的模式与定量依据。 相似文献
2.
A statistical test is described to verify the characteristics of the biological information contained in the dynamics of the flowering process. The test focuses on interactions between the pollen index and climatic variables to investigate if the biological indicator can synthesise the information of the pre-flowering phases. The multiple-regression model is built upon two pre-flowering climate macro-indicators extracted by Principal Component Analysis (PCA) and the optimised pollen index is obtained by non-parametric estimation. The empirical analysis is applied to 15 stations located in southern Italy in regions that have a longstanding tradition of olive production. Using the variance explained, we find that an optimised pollen index is fairly well predicted by the pre-flowering climatic data. We conclude that the optimised pollen index makes more parsimonious the modelling for predicting olive production. 相似文献
3.
Quantifying variety‐specific heat resistance and the potential for adaptation to climate change 下载免费PDF全文
Jesse Tack Andrew Barkley Trevor W. Rife Jesse A. Poland Lawton Lanier Nalley 《Global Change Biology》2016,22(8):2904-2912
The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field‐trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade‐off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on‐farm varieties. Currently released – but not yet adopted – varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation‐through‐adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. 相似文献
4.
在华北平原黑龙港流域对冬小麦实行3种灌溉模式,研究了不同灌溉模式对冬小麦-夏玉米产量、耗水特性和水分利用效率的影响.结果表明:浇底墒水+拔节水处理(W2,75 mm+90 mm)和浇底墒水+拔节水+灌浆水处理(W3,75 mm+90 mm+60 mm)周年总产量均显著高于只浇底墒水处理(W1,75 mm),增幅分别为8.7%和12.5%.冬小麦全生育期对土壤水的消耗随灌溉量的增加而减少,夏玉米季总耗水量随冬小麦季灌溉量的增加而增加.W2处理冬小麦水分利用效率(WUE)比W3处理高11.1%,而其夏玉米水分利用效率(WUE)与W3处理差异不显著.W2和W1处理的周年水分利用效率(WUET)分别为21.28和21.60 kg.mm-1.hm-2,比W3处理分别高7.8%和9.4%.综合周年产量、耗水量和水分利用效率,W2是较好的节水丰产灌溉模式. 相似文献
5.
M. Gauder S. Graeff‐Hönninger I. Lewandowski W. Claupein 《The Annals of applied biology》2012,160(2):126-136
A field experiment with 15 Miscanthus genotypes including M. × giganteus, M. sacchariflorus, M. sinensis and M. sinensis hybrids was conducted for 14 years at the experimental Ihinger Hof station of the University of Hohenheim in southwest Germany to evaluate interannual yield performance stability over 14 years of harvests of the different genotypes. In this article, a simple formula is presented which could be used to forecast late winter yields using morphological traits in autumn. The data obtained indicated a shorter establishment period to reach a yield plateau of M. × giganteus and M. sacchariflorus than M. sinensis hybrids and M. sinensis genotypes. The best performing genotype was M. × giganteus (Gig‐2, No. 16.21) with a mean spring harvestable yield of 14.1 t DM ha?1 year?1. A correlation analysis with climatic parameters revealed precipitation during the growing period as the key factor for high yields at this site. Likewise, but to a lesser degree, heat sum during the growing period was positively correlated with yields. It could be shown that precipitation/snow during the winter correlated with yield losses, until the harvest date in February/March. Phenological measurements indicated that a high yield potential of the tested genotypes is associated with either an absence of flowering or late flowering. Also, height of the plants and shoot diameter were indicators for high yield potential. Shoot density and plant height at senescence were found to be solid parameters to estimate harvestable biomass in late winter. Yield approximations with a mean accuracy of 80.9% for M.× giganteus genotypes were obtained using the newly developed equation. Yields of M. sinensis hybrid (Sin‐H7) were projected most accurately with this simple formula, resulting in a mean accuracy of 84.5%. 相似文献
6.
本文首次引入幂指模型 ( y=y L Mexp( - bda) )来模拟害虫密度与作物产量间的关系 ,通过对 15组不同来源的害虫与作物竞争资料的模拟 ,证明幂指模型具有实际的生物学意义 ,能准确地描述多种害虫和多种作物间的危害关系 ,预测害虫危害作物可能造成的产量损失。为害虫的经济防治提供了一种新的研究方法 相似文献
7.
For organisms living in unpredictable environments, timing important life‐history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among‐ and within‐season uncertainty. We use a modelling approach that considers among‐season dormancy and within‐season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among‐season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter‐intuitively select for less risk‐spreading within the season. Furthermore, strong priority effects select for earlier within‐season germination phenology which in turn increases the need for bet hedging through among‐season dormancy. 相似文献
8.
Elevated CO2 (eCO2) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nitrogen (N) application rates across experimental data covering 11 field grown wheat (Triticum aestivum) cultivars studied in eight countries on four continents. The eCO2‐induced stimulation of GY increased with N application rates up to ~200 kg/ha. At higher N application, stimulation of GY by eCO2 stagnated or even declined. This was valid both when the yield stimulation was expressed as the total effect and using per ppm CO2 scaling. GPC was decreased by on average 7% under eCO2 and the magnitude of this effect did not depend on N application rate. The net effect of responses on GY and protein concentration was that eCO2 typically increased and decreased grain protein yield at N application rates below and above ~100 kg/ha respectively. We conclude that a negative effect on wheat GPC seems inevitable under eCO2 and that substantial N application rates may be required to sustain wheat protein yields in a world with rising CO2. 相似文献
9.
Gitta Lasslop Stijn Hantson Sandy P. Harrison Dominique Bachelet Chantelle Burton Matthias Forkel Matthew Forrest Fang Li Joe R. Melton Chao Yue Sally Archibald Simon Scheiter Almut Arneth Thomas Hickler Stephen Sitch 《Global Change Biology》2020,26(9):5027-5041
In this study, we use simulations from seven global vegetation models to provide the first multi‐model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001–2012. Fire globally reduces the tree covered area and vegetation carbon storage by 10%. Regionally, the effects are much stronger, up to 20% for certain latitudinal bands, and 17% in savanna regions. Global fire effects on total carbon storage and carbon turnover times are lower with the effect on gross primary productivity (GPP) close to 0. We find the strongest impacts of fire in savanna regions. Climatic conditions in regions with the highest burned area differ from regions with highest absolute fire impact, which are characterized by higher precipitation. Our estimates of fire‐induced vegetation change are lower than previous studies. We attribute these differences to different definitions of vegetation change and effects of anthropogenic land use, which were not considered in previous studies and decreases the impact of fire on tree cover. Accounting for fires significantly improves the spatial patterns of simulated tree cover, which demonstrates the need to represent fire in dynamic vegetation models. Based upon comparisons between models and observations, process understanding and representation in models, we assess a higher confidence in the fire impact on tree cover and vegetation carbon compared to GPP, total carbon storage and turnover times. We have higher confidence in the spatial patterns compared to the global totals of the simulated fire impact. As we used an ensemble of state‐of‐the‐art fire models, including effects of land use and the ensemble median or mean compares better to observational datasets than any individual model, we consider the here presented results to be the current best estimate of global fire effects on ecosystems. 相似文献
10.
11.
高产夏玉米褐斑病产量损失模型及损失机理 总被引:2,自引:0,他引:2
采用田间自然发病、定点标记不同褐斑病病级植株的方法,形成玉米褐斑病不同发病程度的21个小组,利用DPS统计分析软件,采用逐步回归法构建了玉米单穗质量和百粒重的损失估计模型.结果表明:玉米百粒重损失模型为y=-4.012+0.377X1-0.228X2+0.694X3-0.144X4,穗粒质量损失模型为Y=-4.536+0.173X1+0.188X2+0.248X3-0.034X4(Y为损失率,1为开花期病情指数,X2为授粉期病情指数,X3为灌浆期病情指数,X4为蜡熟期病情指数).玉米不同生育期的褐斑病病情指数与单穗质量和百粒重损失之间的实测关系与模型模拟结果相符;褐斑病直接影响玉米穗位叶的净光合速率、RuBP羧化酶和PEP羧化酶活性,病级越高,净光合速率及两种酶的活性越低. 相似文献
12.
13.
《Animal : an international journal of animal bioscience》2014,8(4):596-609
The prediction of grass dry matter intake (GDMI) and milk yield (MY) are important to aid sward and grazing management decision making. Previous evaluations of the GrazeIn model identified weaknesses in the prediction of GDMI and MY for grazing dairy cows. To increase the accuracy of GDMI and MY prediction, GrazeIn was adapted, and then re-evaluated, using a data set of 3960 individual cow measurements. The adaptation process was completed in four additive steps with different components of the model reparameterised or altered. These components were: (1) intake capacity (IC) that was increased by 5% to reduce a general GDMI underprediction. This resulted in a correction of the GDMI mean and a lower relative prediction error (RPE) for the total data set, and at all stages of lactation, compared with the original model; (2) body fat reserve (BFR) deposition from 84 days in milk to next calving that was included in the model. This partitioned some energy to BFR deposition after body condition score nadir had been reached. This reduced total energy available for milk production, reducing the overprediction of MY and reducing RPE for MY in mid and late lactation, compared with the previous step. There was no effect on predicted GDMI; (3) The potential milk curve was reparameterised by optimising the rate of decrease in the theoretical hormone related to secretory cell differentiation and the basal rate of secretory cell death to achieve the lowest possible mean prediction error (MPE) for MY. This resulted in a reduction in the RPE for MY and an increase in the RPE for GDMI in all stages of lactation compared with the previous step; and (4) finally, IC was optimised, for GDMI, to achieve the lowest possible MPE. This resulted in an IC correction coefficient of 1.11. This increased the RPE for MY but decreased the RPE for GDMI compared with the previous step. Compared with the original model, modifying this combination of four model components improved the prediction accuracy of MY, particularly in late lactation with a decrease in RPE from 27.8% in the original model to 22.1% in the adapted model. However, testing of the adapted model using an independent data set would be beneficial and necessary to make definitive conclusions on improved predictions. 相似文献
14.
Bing Liu Leilei Liu Liying Tian Weixing Cao Yan Zhu Senthold Asseng 《Global Change Biology》2014,20(2):372-381
Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat‐growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat‐growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post‐heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post‐heading heat stress and average temperature were statistically significant in the entire wheat‐producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. 相似文献
15.
16.
GERARD W. WALL BRUCE A. KIMBALL JEFFREY W. WHITE MICHAEL J. OTTMAN 《Global Change Biology》2011,17(6):2113-2133
Gas exchange and water relations were evaluated under full‐season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free‐air controlled enhancement (T‐FACE) apparatus utilizing IR heaters maintained canopy air temperature above 3.0 m Heated plots of wheat by 1.3 and 2.7 °C (0.2 and 0.3 °C below the targeted set‐points of Reference plots with dummy heaters) during daytime and nighttime, respectively. Control plots had no apparatus. Every 6 weeks during 2007–2009 wheat was sown under the three warming treatments (i.e., Control, Heated, Reference) in three replicates in a 3 × 3 Latin square (LSQ) design on six plantings during 4 months (i.e., January, March, September, December), or in a natural temperature variation treatment (i.e., Control) in three replicates in a randomized complete block (RCB) design on nine plantings during 7 months (i.e., January, February, April, June, July, August, October). Soil temperature (Ts) and volumetric soil‐water content (θs) were 1.3 °C warmer and 14% lower in Heated compared with Reference plots, respectively. Other than a 1% shading effect, no artifacts on gas exchange or water relations were associated with the IR warming apparatus. IR warming increased carbon gain characteristic of an increase in metabolic rates to higher temperature that may have been attributed to the well‐watered wheat crop and the supplemental irrigation that minimized plant‐to‐air water vapor pressure differences between IR‐warmed and nonwarmed plots. Nevertheless, seasonal oscillations in the IR warming response on carbon gain occurred. IR warming decreased leaf water status and provided thermal protection during freeze events. IR warming is an effective experimental methodology to investigate the impact of global climate change on agronomic cropping and natural ecosystems to a wide range of natural and artificially imposed air temperatures. 相似文献
17.
BACKGROUND AND AIMS: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. METHODS: The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. KEY RESULTS AND CONCLUSIONS: By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits--such as cob weight--and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand. 相似文献
18.
A. García Diez L. Rivas Soriano F. de Pablo Dávila E. L. García Diez 《International journal of biometeorology》1996,39(3):148-150
In earlier papers a qualitative and quantitative model was developed for predicting the number of forest fires occurring per day. This model permits the forecast at 00.00 hours Universal Time Convention (UTC) of any day (d), the number of forest fires per day for a range of several days (d tod+5) over a particular region. Input data are the number of forest fires in the region during two preceding days (d–2 andd–1) and the type of day (real and evaluated from radiosonde ford–2,d–1,d and predicted from meteorological medium-range forecasts, i.e. of European Centre, ford+1,d+2,d+3,d+4 andd+5. As this model requires data obtained by radiosonde, particularly temperatures and geopotentials at 850 and 700 hPa and dew points (or specific humidity) at 850 hPa, this study investigates the spatial validity of the model in relation to the distance from the radiosonde station (RS). The highest quality forecast is obtained for the region immediately surrounding the RS, and diminishes with increasing distance from it, this being due to the data obtained from the RS not being representative of the atmospheric column over the region. Hence, the derivation of the critical distance for a particular quality level of measurement. Conversely, fixed quality level implies a specific separation between RS and the region for the prediction, with a higher predictive quality implying a shorter distance. 相似文献
19.
1. Information on the movement of insects is critical to understanding the spatial spread, dynamics, and genetic structure of their populations, as well as their interactions with other species. With this in mind, the movement behaviour of the stem‐galling fly Eurosta solidaginis Fitch (Diptera: Tephritidae) was investigated. 2. Fluorescent‐marked adults were released at a single location within pure patches of the host plant, tall goldenrod Solidago altissima, and their distributions censused repeatedly throughout the day. 3. Following their release, male and female flies redistributed themselves in a manner that was well described by a simple‐diffusion model. The diffusion rate was independent of fly density and time since flies were released. 4. Female flies dispersed at a significantly faster rate, and therefore farther on average, than males. Based on the diffusion model, it was estimated that at 2.5–3.0 h post release, males and females had a median dispersal distance of only 2.0 and 2.5 m respectively. Furthermore, 95% of the males were estimated to have dispersed no more than 5.9 m, and females no more than 6.4 m. 5. Post‐release censuses suggested that flies were most active during mid morning, disappeared from the site at a rate of 10–15% per hour (most likely due to mortality), and survived for less than 2 days. Based on the rate of spread, diel activity, and liberal estimates of longevity in the field, 50% of the ovipositing females were predicted to have had a maximum lifetime range of movement within a patch of hosts of ≤ 51 m (95% were expected to have been limited to ≤ 130 m). 6. These data are used to assess whether the absence of a positive correlation between host‐plant preference and offspring performance in this system could be due to the limited scale of dispersal of this species relative to the spatial scale at which its oviposition behaviour has been studied. 相似文献
20.
黄淮海平原玉米施氮量对后茬小麦土壤剖面硝态氮和产量的影响 总被引:3,自引:0,他引:3
在冬小麦-夏玉米一年两熟模式下,玉米品种“郑单958”(植株密度9株/m^2)和小麦品种“93-9”(基本苗704株/m^2),冬小麦基施144kg N/hm^2,研究了玉米5个施N量(0、90、180、270和360kg/hm^2)对后茬小麦期间土壤剖面硝态氮含量、无机氮总量,以及小麦氮素吸收利用和产量的影响.结果表明:(1)与不施氮相比,玉米施氮显著增加小麦季0~200cm土壤硝态氮含量;自拔节起,0~40cm、0~130cm和0~200cm硝态氮含量均随施氮量增加而递增,在硝态氮含量较高的小区增幅也大.(2)轮作一周期后,不施氮和施氮360kg/hm^2显著影响0~130cm和0~200cm无机氮总量,但在90~270 kg/hm^2之间,施氮量的影响不明显.(3)施氮小于180kg/hm^2时,成熟期小麦植株氮素和籽粒氮素积累量、氮肥利用率均随施氮量增加而递增,但不明显.(4)与不施氮相比,施氮90kg/hm^2的小麦产量和麦玉轮作总产均增加但不明显,施氮180 kg/hm^2均显著增加,施氮270kg/hm^2与180kg/hm^2无明显差异.本试验条件下,夏玉米施氮90~180 kg/hm^2是适宜的. 相似文献