首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Climate forecasts project a global increase in extreme weather events, but information on the consequences for ecosystems is scarce. Of particular significance for lakes are severe storms that can influence biogeochemical processes and biological communities by disrupting the vertical thermal structure during periods of stratification. An exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake. Wind speeds were among the most extreme on record. A suite of variables measured throughout the event consistently indicates that a cascade of processes pushed the clear-water lake into an exceptionally turbid state. Specifically, thermocline deepening by the storm-entrained cyanobacteria of a deep chlorophyll maximum located at about 8 m depth into the surface mixed layer. Released from light limitation, intense photosynthesis of the cyanobacteria boosted primary production, increased algal biomass, raised the pH and thus induced massive calcite precipitation to a level never observed within three decades of lake monitoring. As a consequence, water transparency dropped from 6.5 to 2.1 m, the minimum on record for 40 years, and the euphotic zone shrank by about 8 m for several weeks. These results show that cyanobacterial blooms not only are promoted by climate warming, but can also be triggered by extreme storms. Clear-water lakes developing a deep chlorophyll maximum appear to be particularly at risk in the future, if such events become more intense or frequent.  相似文献   

3.
Climate‐related declines in lake area have been identified across circumpolar regions and have been characterized by substantial spatial heterogeneity. An improved understanding of the mechanisms underlying lake area trends is necessary to predict where change is most likely to occur and to identify implications for high latitude reservoirs of carbon. Here, using a population of ca. 2300 lakes with statistically significant increasing and decreasing lake area trends spanning longitudinal and latitudinal gradients of ca. 1000 km in Alaska, we present evidence for a mechanism of lake area decline that involves the loss of surface water to groundwater systems. We show that lakes with significant declines in lake area were more likely to be located: (1) in burned areas; (2) on coarser, well‐drained soils; and (3) farther from rivers compared to lakes that were increasing. These results indicate that postfire processes such as permafrost degradation, which also results from a warming climate, may promote lake drainage, particularly in coarse‐textured soils and farther from rivers where overland flooding is less likely and downslope flow paths and negative hydraulic gradients between surface water and groundwater systems are more common. Movement of surface water to groundwater systems may lead to a deepening of subsurface flow paths and longer hydraulic residence time which has been linked to increased soil respiration and CO2 release to the atmosphere. By quantifying relationships between statewide coarse resolution maps of landscape characteristics and spatially heterogeneous responses of lakes to environmental change, we provide a means to identify at‐risk lakes and landscapes and plan for a changing climate.  相似文献   

4.
Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2) fluxes by analysing a 10‐year (2008–2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2 sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2 source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high‐WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2 source, as opposed to being a sink or neutral for CO2 in other years. Furthermore, the extreme inundation in 2016 was followed by a 4‐month postinundation period with lower net ecosystem CO2 uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2 balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2 sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.  相似文献   

5.
Jason D. Stockwell  Jonathan P. Doubek  Rita Adrian  Orlane Anneville  Cayelan C. Carey  Laurence Carvalho  Lisette N. De Senerpont Domis  Gaël Dur  Marieke A. Frassl  Hans‐Peter Grossart  Bas W. Ibelings  Marc J. Lajeunesse  Aleksandra M. Lewandowska  María E. Llames  Shin‐Ichiro S. Matsuzaki  Emily R. Nodine  Peeter Nges  Vijay P. Patil  Francesco Pomati  Karsten Rinke  Lars G. Rudstam  James A. Rusak  Nico Salmaso  Christian T. Seltmann  Dietmar Straile  Stephen J. Thackeray  Wim Thiery  Pablo Urrutia‐Cordero  Patrick Venail  Piet Verburg  R. Iestyn Woolway  Tamar Zohary  Mikkel R. Andersen  Ruchi Bhattacharya  Josef Hejzlar  Nasime Janatian  Alfred T. N. K. Kpodonu  Tanner J. Williamson  Harriet L. Wilson 《Global Change Biology》2020,26(5):2756-2784
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.  相似文献   

6.
7.
1. Primary production and respiration in streams, collectively referred to as stream ecosystem metabolism, are fundamental processes that determine trophic structure, biomass and nutrient cycling. Few studies have used high‐frequency measurements of gross primary production (GPP) and ecosystem respiration (ER) over extended periods to characterise the factors that control stream ecosystem metabolism at hourly, daily, seasonal and annual scales. 2. We measured ecosystem metabolism at 5‐min intervals for 23 months in Shepherd Creek, a small suburban stream in Cincinnati, Ohio (U.S.A.). 3. Daily GPP was best predicted by a model containing light and its synergistic interaction with water temperature. Water temperature alone was not significantly related to daily GPP, rather high temperatures enhanced the capacity of autotrophs to use available light. 4. The relationship between GPP and light was further explored using photosynthesis–irradiance curves (P–I curves). Light saturation of GPP was evident throughout the winter and spring and the P–I curve frequently exhibited strong counterclockwise hysteresis. Hysteresis occurred when water temperatures were greater in the afternoon than in the morning, although light was similar, further suggesting that light availability interacts synergistically with water temperature. 5. Storm flows strongly depressed GPP in the spring while desiccation arrested aquatic GPP and ER in late summer and autumn. 6. Ecosystem respiration was best predicted by GPP, water temperature and the rate of water exchange between the surface channel and transient storage zones. We estimate that c. 70% of newly fixed carbon was immediately respired by autotrophs and closely associated heterotrophs. 7. Interannual, seasonal, daily and hourly variability in ecosystem metabolism was attributable to a combination of light availability, water temperature, storm flow dynamics and desiccation. Human activities affect all these factors in urban and suburban streams, suggesting stream ecosystem processes are likely to respond in complex ways to changing land use and climate.  相似文献   

8.
Ice storms are an important and recurring ecological disturbance in many temperate forest ecosystems. In 1998, a severe ice storm damaged over ten million hectares of forest across northern New York State, eastern Canada, and New England impacting ecosystem processes across the landscape. This study investigated the spatial arrangement of forest damage at the terrestrial-aquatic interface, an ecological edge of importance to aquatic habitat and nutrient cycling. Vegetation indices, derived from satellite imagery and field-based data, were used to measure forest canopy damage across a 2045 km2 region in northern New York State affected by the 1998 storm. We investigated the forest damage gradient in the riparian zone of 13 stream segments of varying size (92.5 km total length) and 13 lakes (37.4 km of shoreline). Large streams (-fourth and fifth order), occurring in forests that received modest ice damage (<15% disturbance coverage), exhibited significantly more damage in the riparian zone within 25 m of the water than in adjacent forest sections; F(3,12) = 7.3 P = 0.005. In similar moderately damaged forests, lake shorelines were significantly more damaged than interior forests; F(3,9) = 6.4 P = 0.013. Analysis of transitions in damage intensity revealed that canopy disturbance followed a decreasing trend (up to 3.5 times less) with movement inland from the terrestrial-aquatic interface. The observed predisposition of forest to disturbance along this ecosystem interface emphasizes the role of the physical landscape in concentrating the movement of wood from the forest canopy to locations proximate to water bodies, thus reinforcing findings that ice storms are drivers of ecological processes that are spatially concentrated.  相似文献   

9.
Extreme weather events may be just as important as gradual trends for the long‐term trajectories of ecosystems. For alpine lakes, which are exposed to both exacerbated atmospheric warming and intense episodic weather events, future conditions might not be appropriately forecast by only climate change trends, i.e. warming, if extreme events have the potential to deflect their thermal and metabolic states from their seasonal ranges. We used high‐frequency monitoring data over three open‐water seasons with a one‐dimensional hydrodynamic model of the high‐altitude Lake Muzelle (France) to show that rainstorms or windstorms, notwithstanding their intensity, did not trigger long‐lasting consequences to the lake characteristics when light penetration into the lake was not modified. In contrast, storms associated with high turbidity input from the watershed (“turbid storms”) strongly modified the lacustrine hydrodynamics and metabolism for the rest of the open‐water season through reduced light penetration. The long‐lasting effects of turbid storms were related to the inputs and in‐lake persistence of very light glacial suspensoids from the watershed. The occurrence of the observed turbid storms was not related to the wind or rain intensities during the events. Instead, the turbid storms occurred after dry and atypically warm spells, i.e. meteorological conditions expected to be more frequent in this alpine region in the upcoming decades. Consequently, storm events, notwithstanding their intensity, are expected to strongly imprint the future ecological status of alpine lakes under climate warming.  相似文献   

10.
Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were co-equal. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2–3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study, with annual GPP being similar (488 and 519 g O2 m−2 y−1 or 183 and 195 g C m−2 y−1) but annual ER being higher in 2004 than 2005 (−1,645 vs. −1,292 g O2 m−2 y−1 or −617 and −485 g C m−2 y−1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of these important ecosystems.  相似文献   

11.
Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in a mixed‐grass prairie in Oklahoma, USA, from 2009 to 2013. Results showed that although ecosystem respiration (ER) and gross primary production (GPP) negatively responded to warming, net ecosystem exchange of CO2 (NEE) did not significantly change under warming. Doubled precipitation stimulated and halved precipitation suppressed ER and GPP equivalently, with the net outcome being unchanged in NEE. These results indicate that warming and altered precipitation do not necessarily have profound impacts on ecosystem C storage. In addition, we found that clipping enhanced NEE due to a stronger positive response of GPP compared to ER, indicating that clipping could potentially be an effective land practice that could increase C storage. No significant interactions between warming, altered precipitation, and clipping were observed. Meanwhile, we found that belowground net primary production (BNPP) in general was sensitive to climate change and land use though no significant changes were found in NPP across treatments. Moreover, negative correlations of the ER/GPP ratio with soil temperature and moisture did not differ across treatments, highlighting the roles of abiotic factors in mediating ecosystem C fluxes in this grassland. Importantly, our results suggest that belowground C cycling (e.g., BNPP) could respond to climate change with no alterations in ecosystem C storage in the same period.  相似文献   

12.
A number of modelling results suggested thermocline shifts as a consequence of global climate change in stratifying lakes. Abundance and composition of the phytoplankton assemblage is strongly affected by the stratification patterns, and therefore, change in the thermocline position might have a substantial effect on this community or even on the whole lake ecosystem. In this study, thermocline depths in large mesocosms installed in Lake Stechlin (Germany) were deepened by 2 meters and phytoplankton changes were analysed by comparing changes to untreated mesocosms. Higher amounts of SRP were registered in the hypolimnion of treatment mesocosms than in the controls, and there were no differences in the epilimnion. Small but significant changes were observed on the phytoplankton community composition related to the effect of deepening the thermocline; however, it was weaker than the yearly successional changes. The most remarkable differences were caused by Planktothrix rubescens and by chlorophytes. P. rubescens became strongly dominant at the end of the experiment in the mesocosms, and in the open lake as well. The results of the experiment cannot clearly support the proliferation of cyanobacteria in general; however, the deepened thermocline can modify the behaviour of some species, as was observed in case of P. rubescens.  相似文献   

13.
Many northern lake‐rich regions are undergoing pronounced hydrological change, yet inadequate knowledge of the drivers of these landscape‐scale responses hampers our ability to predict future conditions. We address this challenge in the thermokarst landscape of Old Crow Flats (OCF) using a combination of remote sensing imagery and monitoring of stable isotope compositions of lake waters over three thaw seasons (2007–2009). Quantitative analysis confirmed that the hydrological behavior of lakes is strongly influenced by catchment vegetation and physiography. Catchments of snowmelt‐dominated lakes, typically located in southern peripheral areas of OCF, encompass high proportions of woodland/forest and tall shrub vegetation (mean percent land cover = ca. 60%). These land cover types effectively capture snow and generate abundant snowmelt runoff that offsets lake water evaporation. Rainfall‐dominated lakes that are not strongly influenced by evaporation are typically located in eastern and northern OCF where their catchments have higher proportions of dwarf shrub/herbaceous and sparse vegetation (ca. 45%), as well as surface water (ca. 20%). Evaporation‐dominated lakes, are located in the OCF interior where their catchments are distinguished by substantially higher lake area to catchment area ratios (LA/CA = ca. 29%) compared to low evaporation‐influenced rainfall‐dominated (ca. 10%) and snowmelt‐dominated (ca. 4%) lakes. Lakes whose catchments contain >75% combined dwarf shrub/herbaceous vegetation and surface water are most susceptible to evaporative lake‐level drawdown, especially following periods of low precipitation. Findings indicate that multiple hydrological trajectories are probable in response to climate‐driven changes in precipitation amount and seasonality, vegetation composition, and thermokarst processes. These will likely include a shift to greater snowmelt influence in catchments experiencing expansion of tall shrubs, greater influence from evaporation in catchments having higher proportions of surface water, and an increase in the rate of thermokarst lake expansion and probability of drainage. Local observations suggest that some of these changes are already underway.  相似文献   

14.
The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to “phenological mismatches” as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three‐year experiment to examine the consequences for CO2 exchange of advanced spring green‐up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green‐up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2 uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green‐up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m?2 s?1 toward a greater CO2 sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2 uptake. Importantly, while the direct effect of climate warming on phenology of green‐up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats.  相似文献   

15.
The uncertainties of China's gross primary productivity (GPP) estimates by global data‐oriented products and ecosystem models justify a development of high‐resolution data‐oriented GPP dataset over China. We applied a machine learning algorithm developing a new GPP dataset for China with 0.1° spatial resolution and monthly temporal frequency based on eddy flux measurements from 40 sites in China and surrounding countries, most of which have not been explored in previous global GPP datasets. According to our estimates, mean annual GPP over China is 6.62 ± 0.23 PgC/year during 1982–2015 with a clear gradient from southeast to northwest. The trend of GPP estimated by this study (0.020 ± 0.002 PgC/year2 from 1982 to 2015) is almost two times of that estimated by the previous global dataset. The GPP increment is widely spread with 60% area showing significant increasing trend (p < .05), except for Inner Mongolia. Most ecosystem models overestimated the GPP magnitudes but underestimated the temporal trend of GPP. The monsoon affected eastern China, in particular the area surrounding Qinling Mountain, seems having larger contribution to interannual variability (IAV) of China's GPP than the semiarid northwestern China and Tibetan Plateau. At country scale, temperature is the dominant climatic driver for IAV of GPP. The area where IAV of GPP dominated by temperature is about 42%, while precipitation and solar radiation dominate 31% and 27% respectively over semiarid area and cold‐wet area. Such spatial pattern was generally consistent with global GPP dataset, except over the Tibetan Plateau and northeastern forests, but not captured by most ecosystem models, highlighting future research needs to improve the modeling of ecosystem response to climate variations.  相似文献   

16.
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.  相似文献   

17.
Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate‐water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using ‘clumped’ isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10–55 m in Pavilion Lake, and 10–25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the 18O/16O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope‐based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7–55 m) were recovered from below the present‐day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water 18O/16O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters.  相似文献   

18.
Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad‐scale cyanobacterial expansion is evident in global meta‐analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β‐carotene, pheophytin a) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least‐squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulfur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis, which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles.  相似文献   

19.
Arctic habitats at the interface between land and sea are particularly vulnerable to climate change. The northern Teshekpuk Lake Special Area (N-TLSA), a coastal plain ecosystem along the Beaufort Sea in northern Alaska, provides habitat for migratory waterbirds, caribou, and potentially, denning polar bears. The 60-km coastline of N-TLSA is experiencing increasing rates of coastline erosion and storm surge flooding far inland resulting in lake drainage and conversion of freshwater lakes to estuaries. These physical mechanisms are affecting upland tundra as well. To better understand how these processes are affecting habitat, we analyzed long-term observational records coupled with recent short-term monitoring. Nearly the entire coastline has accelerating rates of erosion ranging from 6 m/year from 1955 to 1979 and most recently peaking at 17 m/year from 2007 to 2009, yet an intensive monitoring site along a higher bluff (3–6 masl) suggested high interannual variability. The frequency and magnitude of storm events appears to be increasing along this coastline and these patterns correspond to a greater number of lake tapping and flooding events since 2000. For the entire N-TLSA, we estimate that 6% of the landscape consists of salt-burned tundra, while 41% is prone to storm surge flooding. This offset may indicate the relative frequency of low-magnitude flood events along the coastal fringe. Monitoring of coastline lakes confirms that moderate westerly storms create extensive flooding, while easterly storms have negligible effects on lakes and low-lying tundra. This study of two interacting physical mechanisms, coastal erosion and storm surge flooding, provides an important example of the complexities and data needs for predicting habitat change and biological responses along Arctic land–ocean interfaces.  相似文献   

20.
1. Within a region with common climatic conditions, lake thermal variables should exhibit coherent variability patterns to the extent to which they are not influenced by lake specific features such as morphometry and water clarity. We tested the degree of temporal coherence in interannual variability for climatic variables (air temperature and solar radiation) among four lake districts in the Upper Great Lakes Region. We also tested the degree of coherence of lake thermal variables (near‐surface temperature, eplimnetic temperature, hypolimnetic temperature and thermocline depth) for lakes within these districts. 2. Our four lake districts included the Experimental Lakes Area in north‐western Ontario, the Dorset Research Centre area north of Toronto, Ontario, the Northern Highland Lake District in northern Wisconsin, and the Yahara Lakes near Madison in southern Wisconsin. Seventeen lakes were analyzed for lake thermal variables dependent on stratification. Another five lakes were added for the analysis of near‐surface temperature. 3. The analysis tested whether for monthly and summer means, the climate (air temperature and solar radiation) across the four lake districts was coherent interannually and whether variables which measure the thermal structure of the lakes were coherent interannually among lakes within each lake district and across the four lake districts. 4. Temporal coherence was estimated by the correlation between lake districts for meteorological variables and between lake pairs for lake thermal variables. Mean coherence and the percentage of correlations exceeding the 5% significance level were derived both within and between lake districts for lake thermal variables. 5. Across the four lake districts, summer mean air temperature was highly coherent while summer solar radiation was less coherent. Approximately 60–80% of the interannual variation in mean summer air temperature at a site occurred across the entire region. Less than 45% of the variation in solar radiation occurred across sites. 6. Epilimnetic temperature and the near‐surface temperature were highly coherent both within and between lake districts. The coherence of thermocline depth within and between lake districts was weaker. Hypolimnetic temperature was not coherent between lake districts for most lake pairs. It was coherent among lakes within some lake districts. 7. The influences of local weather and differences among lakes in water clarity are discussed in the context of differences in levels of coherence among lake thermal variables and among lake pairs for a given variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号