首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xinyou Yin 《Annals of botany》2013,112(3):465-475

Background

Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2].

Analysis

A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth.

Conclusions

The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity.  相似文献   

2.
大气CO2浓度升高对植物根系的影响   总被引:3,自引:0,他引:3  
植物长期生长在CO2浓度不断升高的环境中,其结构和功能都将受到影响,这种影响不仅表现在植物的地上部分,同时也表现在植物的地下部分(根系),尤其是细根的长度、直径、产量、周转以及根与枝的分配模式等方面。植物根系结构和功能的改变影响植物地上部分和生态系统物质循环中的碳动态及土壤中碳库的变化。目前有关大气CO2浓度升高对根系动态影响的研究报道主要包括大气CO2浓度升高对根系结构(直径、分枝、长度、数量等)和根系生理(周转率、产量、碳分配模式等)的影响2个方面。目前,该领域研究还存在一些不足,例如在CO2浓度升高条件下,对植物根系内部的调控机制,以及由其引起的物质循环和能量流动的动态变化的了解较少;至今没有令人信服的证据说明大气CO2浓度升高使根系周转升高还是降低。今后应加强研究在CO2浓度升高条件下根系的周转变化和光合产物分配模式变化,CO2浓度升高和外界环境因素的共同作用对根系的影响,以及采用不同研究方法和研究对象在不同立地条件下开展升高CO2浓度对根系影响的对比研究等。  相似文献   

3.
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi‐year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model‐based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well‐controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.  相似文献   

4.
Plants grown in elevated [CO2] have lower protein and mineral concentrations compared with plants grown in ambient [CO2]. Dilution by enhanced production of carbohydrates is a likely cause, but it cannot explain all of the reductions. Two proposed, but untested, hypotheses are that (1) reduced canopy transpiration reduces mass flow of nutrients to the roots thus reducing nutrient uptake and (2) changes in metabolite or enzyme concentrations caused by physiological changes alter requirements for minerals as protein cofactors or in other organic complexes, shifting allocation between tissues and possibly altering uptake. Here, we use the meta‐analysis of previous studies in crops to test these hypotheses. Nutrients acquired mostly by mass flow were decreased significantly more by elevated [CO2] than nutrients acquired by diffusion to the roots through the soil, supporting the first hypothesis. Similarly, Mg showed large concentration declines in leaves and wheat stems, but smaller decreases in other tissues. Because chlorophyll requires a large fraction of total plant Mg, and chlorophyll concentration is reduced by growth in elevated [CO2], this supports the second hypothesis. Understanding these mechanisms may guide efforts to improve nutrient content, and allow modeling of nutrient changes and health impacts under future climate change scenarios.  相似文献   

5.
6.
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.  相似文献   

7.
The response of wheat crops to elevated CO2 (eCO2) was measured and modelled with the Australian Grains Free‐Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi‐arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha?1 and 1600 to 3900 kg ha?1, respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol?1 CO2) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO2, increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM‐Wheat, APSIM‐Nwheat, CAT‐Wheat, CROPSYST, OLEARY‐CONNOR and SALUS) in simulating crop responses to eCO2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2. However, under irrigation, the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2, water and temperature is required to resolve these model discrepancies.  相似文献   

8.
Understanding the responses of soil nitrous oxide (N2O) emissions from terrestrial ecosystems to future CO2 enrichment and warming is critical for the development of mitigation and adaptation policies. The effects of continuous increase in elevated CO2 (EC) and elevated temperature (ET) on N2O emissions are not fully known. We synthesized 209 measurements from 70 published studies and carried out a meta-analysis to examine individual and interactive effects of EC and ET on N2O emissions from grasslands, croplands and forests. On average, a significant increase of 23% in N2O emissions was observed under EC across all case studies. EC did not affect N2O emissions from grasslands or forests, but significantly increased N2O emissions in croplands by 38%. The extent of ET effects on N2O emissions was nonsignificant and there was no significant difference in N2O emission responses among these three terrestrial systems. ET only promoted N2O emissions in forest by about 32% when ET was less than 2°C. The interactive effect of EC and ET on N2O emissions was significantly synergistic, showing a greater increase than the sum of the effects caused by EC and ET alone. Our findings indicated that the combination of EC and ET substantially promoted soil N2O and highlighted the urgent need to explore its mechanisms to better understand N2O responses under future climate change.  相似文献   

9.
Second-generation, dedicated lignocellulosic crops for bioenergy are being hailed as the sustainable alternative to food crops for the generation of liquid transport fuels, contributing to climate change mitigation and increased energy security. Across temperate regions they include tree species grown as short rotation coppice and intensive forestry (e.g. Populus and Salix species) and C4 grasses such as miscanthus and switchgrass. For bioenergy crops it is paramount that high energy yields are maintained in order to drive the industry to an economic threshold where it has competitive advantage over conventional fossil fuel alternatives. Therefore, in the face of increased planting of these species, globally, there is a pressing need for insight into their responses to predicted changes in climate to ensure these crops are 'climate proofed' in breeding and improvement programmes. In this review, we investigate the physiological responses of bioenergy crops to rising atmospheric CO2 ([Ca]) and drought, with particular emphasis on the C3 Salicaceae trees and C4 grasses. We show that while crop yield is predicted to rise by up to 40% in elevated [Ca], this is tempered by the effects of water deficit. In response to elevated [Ca] stomatal conductance and evapotranspiration decline and higher leaf–water potentials are observed. However, whole-plant responses to [Ca] are often of lower magnitude and may even be positive (increased water use in elevated [Ca]). We conclude that rising [Ca] is likely to improve drought tolerance of bioenergy crop species due to improved plant water use, consequently yields in temperate environments may remain high in future climate scenarios.  相似文献   

10.
11.
For most studies involving the response of plants to future concentrations of atmospheric carbon dioxide (CO2), a current concentration of 360–370 μatm is assumed, based on recent data obtained from the Mauna Loa observatory. In the present study, average seasonal diurnal values of ambient CO2 obtained at ground level from three global locations (Australia, Japan and the USA) indicated that the average CO2 (at canopy height) can vary from over 500 μatm at night to 350 μatm during the day with average 24‐h values ranging from 390 to 465 μatm. At all sites sampled, ambient CO2 rose to a maximum value during the pre‐dawn period (03.00–06.00 hours); at sunrise, CO2 remained elevated for several hours before declining to a steady‐state concentration between 350 and 400 μatm by mid‐morning (08.00–10.00 hours). Responses of plant growth to simulations of the observed variation of in situ CO2 were compared to growth at a constant CO2 concentration in controlled environment chambers. Three diurnal patterns were used (constant 370 μatm CO2, constant 370 during the day (07.00–19.00 hours), high CO2 (500 μatm) at night; or, high CO2 (500 μatm) at night and during the early morning (07.00–09.00 hours) decreasing to 370 μatm by 10.00 hours). Three plant species ? soybean (Glycine max, L (Merr.), velvetleaf (Abutilon theophrasti L.) and tomato (Lycopersicon esculentum L.) ? were grown in each of these environments. For soybean, high night‐time CO2 resulted in a significant increase in net assimilation rate (NAR), plant growth, leaf area and biomass relative to a constant ambient value of CO2 by 29 days after sowing. Significant increases in NAR for all three species, and significant increases in leaf area, growth and total biomass for two of the three C3 species tested (velvetleaf and soybean) were also observed after 29 days post sowing for the high night/early morning diurnal pattern of CO2. Data from these experiments suggest that the ambient CO2 concentration experienced by some plants is higher than the Mauna Loa average, and that growth of some agricultural species at in situ CO2 levels can differ significantly from the constant CO2 value used as a control in many CO2 experiments. This suggests that a reassessment of control conditions used to quantify the response of plants to future, elevated CO2 may be required.  相似文献   

12.
Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process‐based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free‐air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model‐to‐model and model‐to‐observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2–15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel μ = approximately 28% ± 10%) compared to the observations (μ = approximately 30% ± 13%) at the well‐coupled coniferous site (Duke), but poor (intermodel μ = approximately 24% ± 6%; observations μ = approximately 38% ± 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.  相似文献   

13.
利用封顶式生长室模拟未来变化的气候条件,研究了亚高山林线优势物种岷江冷杉(Abies faxoniana)和4种草本植物形态与竞争指标对CO2浓度和温度升高的响应.结果表明:处理2个生长季后,高CO2浓度条件下,岷江冷杉冠体积增加42%,比叶面积、比冠体积和比根长分别增加17%、65%和19%;温度升高使岷江冷杉冠形更纵向生长,冠体积增加22%,根冠比和比根长均比对照增加17%;二者同时升高使岷江冷杉冠体积增加79%,比叶面积、比冠体积和比根长分别增加17%、197%和18%.CO2浓度升高处理下糙野青茅(Deyeuxia scabrescen)的株高、基茎和每株叶片数增加,但比叶面积降低;甘肃苔草(Carexkansuensis)、东方草莓(Fragaria orientali)和紫花碎米荠(Cardamine tangutorum)的各项指标变化与青茅相反.温度升高下青茅、苔草、草莓株高、基茎和根冠比下降.二者同时升高条件下4种草本植物的基茎和每株叶片数增加,但比叶面积和根冠比降低.这表明,在CO2浓度和温度升高处理下,岷江冷杉形成有利于生长的冠层结构且单位质量的竞争力增加,而4种草本植物的形态结构和竞争力均受到不同程度的负面影响.  相似文献   

14.
Hao XY  Han X  Li P  Yang HB  Lin ED 《应用生态学报》2011,22(10):2776-2780
利用FACE系统在大田条件下通过盆栽试验研究了大气CO2浓度升高[CO2浓度平均为(550+60) μmol·mo1-1]对绿豆叶片光合生理和叶绿素荧光参数的影响.结果表明:与对照[ CO2浓度平均为(389+40) μmol·mol-1左右]相比,大气CO2浓度升高使花荚期绿豆叶片净光合速率(Pn)和胞间CO2浓度(Ci)分别升高11.7%和9.8%,气孔导度(Gs)和蒸腾速率(Tr)分别下降32.0%和24.6%,水分利用效率(WUE)提高83.5%;在蕾期,CO2浓度升高对绿豆叶片叶绿素初始荧光(Fo)、最大荧光(Fm)、可变荧光(Fv)、Fv/Fm和Fv/Fo没有显著影响;在鼓粒期,CO2浓度升高使绿豆叶片Fo增加19.1%,Fm和Fv分别下降9.0%和14.3%,Fv/Fo和Fv/Fm分别下降25.8%和6.2%.表明大气CO2浓度升高可能使绿豆生长后期光系统Ⅱ反应中心结构受到破坏,叶片的光合能力下降.  相似文献   

15.
Mesophyll conductance (gm) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large‐scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An ? Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm‐explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (?2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.  相似文献   

16.
This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration (RS) in a Danish Calluna‐Deschampsia‐heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO2 (+130 ppm), raised soil temperature (+0.4 °C) and extended summer drought (5–8% precipitation exclusion) was established in 2005. The average RS, observed in the control over 3 years of measurements (1.7 μmol CO2 m?2 sec?1), increased 38% under elevated CO2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer drought decreased RS by 14%, while elevated soil temperature did not affect RS overall. A significant interaction between elevated temperature and drought resulted in further reduction of RS when these treatments were combined. A detailed analysis of short‐term RS dynamics associated with drought periods showed that RS was reduced by ~50% and was strongly correlated with soil moisture during these events. Recovery of RS to pre‐drought levels occurred within 2 weeks of rewetting; however, unexpected drought effects were observed several months after summer drought treatment in 2 of the 3 years, possibly due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS. The model predicted annual sums of RS in 2006 and 2007, in the control, were 672 and 719 g C m?2 y?1, respectively. For the full treatment combination, i.e. the future climate scenario, the model predicted that soil respiratory C losses would increase by ~21% (140–150 g C m?2 y?1). Therefore, in the future climate, stimulation of C storage in plant biomass and litter must be in excess of 21% for this ecosystem to not suffer a reduction in net ecosystem exchange.  相似文献   

17.
Climate change predictions foresee a combination of rising CO2, temperature and altered precipitation. Effects of single climatic variables are well defined, but the importance of combined variables and genotypic effects is less known, although pivotal for assessing climate change impacts, for example, with crop growth models. This study provides developmental and physiological data from combined climatic factors for two distinct wheat cultivars (Paragon and Gladius), as a basis to improve predictions for climate change scenarios. The two cultivars were grown in controlled climate chambers in a fully factorial setup of atmospheric CO2 concentration, growth temperature and watering regime. The cultivars differed considerably in their developmental rate, response pattern and the parameters responsible for most of their variation. The growth of Paragon was linked to climatic effects on photosynthesis and mainly affected by temperature. Paragon was overall more negatively affected by all treatment combinations compared to Gladius. Gladius was mostly affected by watering regime. The cultivars' acclimation strategies to climate factors varied significantly. Thus, considering a single factor is an oversimplification very likely impacting the accuracy of crop growth models. Intraspecific crop variation could help understanding genotype by environment variation. Cultivars with high phenotypic plasticity may have greater resilience against climatic variability.  相似文献   

18.
Rising CO2 concentrations associated with drought stress is likely to influence not only aboveground growth, but also belowground plant processes. Little is known about root exudation being influenced by elements of climate change. Therefore, this study wanted to clarify whether barley root exudation responds to drought and CO2 enrichment and whether this reaction differs between an old and a recently released malting barley cultivar. Barley plants were grown in pots filled with sand in controlled climate chambers at ambient (380 ppm) or elevated (550 ppm) atmospheric [CO2] and a normal or reduced water supply. Root exudation patterns were examined at the stem elongation growth stage and when the inflorescences emerged. At both dates, root exudates were analyzed for different compounds such as total free amino acids, proline, potassium, and some phytohormones. Elevated [CO2] decreased the concentrations in root exudates of some compounds such as total free amino acids, proline, and abscisic acid. Moreover, reduced water supply increased proline, potassium, electric conductivity, and hormone concentrations. In general, the modern cultivar showed higher concentrations of proline and abscisic acid than the old one, but the cultivars responded differentially under elevated CO2. Plant developmental stage had also an impact on the root exudation patterns of barley. Generally, we observed significant effects of CO2 enrichment, watering levels, and, to a lesser extent, cultivar on root exudation. However, we did not find any mitigation of the adverse effects of drought by elevated CO2. Understanding the multitude of relationships within the rhizosphere is an important aspect that has to be taken into consideration in the context of crop performance and carbon balance under conditions of climate change.  相似文献   

19.
Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2) because of their high potential growth rates and flexible phenology. During the 10‐year life of the Nevada Desert FACE (free‐air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long‐term elevated (CO2) exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated (CO2) in a wet El Niño year near the beginning of the experiment. However, a multiyear dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated (CO2) gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated (CO2). This long‐term experiment resulted in two primary conclusions: (i) elevated (CO2) does not increase productivity of annuals in most years; and (ii) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots.  相似文献   

20.
Quantifying soil organic carbon (SOC) dynamics at a high spatial and temporal resolution in response to different agricultural management practices and environmental conditions can help identify practices that both sequester carbon in the soil and sustain agricultural productivity. Using an agricultural systems model (the Agricultural Production Systems sIMulator), we conducted a high spatial resolution and long‐term (122 years) simulation study to identify the key management practices and environmental variables influencing SOC dynamics in a continuous wheat cropping system in Australia's 96 million ha cereal‐growing regions. Agricultural practices included five nitrogen application rates (0–200 kg N ha?1 in 50 kg N ha?1 increments), five residue removal rates (0–100% in 25% increments), and five residue incorporation rates (0–100% in 25% increments). We found that the change in SOC during the 122‐year simulation was influenced by the management practices of residue removal (linearly negative) and fertilization (nonlinearly positive) – and the environmental variables of initial SOC content (linearly negative) and temperature (nonlinearly negative). The effects of fertilization were strongest at rates up to 50 kg N ha?1, and the effects of temperature were strongest where mean annual temperatures exceeded 19 °C. Reducing residue removal and increasing fertilization increased SOC in most areas except Queensland where high rates of SOC decomposition caused by high temperature and soil moisture negated these benefits. Management practices were particularly effective in increasing SOC in south‐west Western Australia – an area with low initial SOC. The results can help target agricultural management practices for increasing SOC in the context of local environmental conditions, enabling farmers to contribute to climate change mitigation and sustaining agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号