首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细根作为植物最重要的资源获取功能器官,是影响陆地生态系统的重要组成部分。定量化毛竹的细根功能性状对于理解其生理生态特征响应及生活史策略至关重要。为揭示毛竹细根功能性状随海拔梯度的变化规律以及细根的适应策略,对武夷山不同海拔(840 m、1040 m、1240 m)毛竹细根的碳(C)、氮(N)、磷(P)含量和比根长(SRL)、比根面积(SRA)等性状进行测定,分析细根性状在海拔上的差异及其异速生长关系。结果表明:(1)不同海拔毛竹细根养分性状存在显著差异。毛竹细根C含量在海拔1040 m最大。随海拔升高,细根N、P含量均呈下降趋势,细根C∶N、C∶P随着海拔的升高而增加。(2)细根的结构性状在海拔梯度上差异显著。随海拔升高,细根平均根直径(AvgDiam)、SRL及SRA均呈下降趋势,而根组织密度(RTD)呈升高趋势。(3)细根性状间存在显著的异速生长关系。细根N与P含量存在显著的等速生长关系,二者与C含量存在显著异速生长关系;SRL与SRA存在显著的等速生长关系,二者与RTD存在显著的负等速生长关系,与N含量存在显著的异速生长关系;细根AvgDiam与RTD存在显著的负异速生长关系。毛...  相似文献   

2.
采集欧美杨107Ⅰ代和Ⅱ代人工林细根样品,分析杨树不同根序细根数量特征(根长度、表面积和生物量)和形态特征(比根长、根长密度、根组织密度)对季节波动的响应及其代际差异.结果表明: 杨树各根序细根数量特征(根长度、表面积和生物量)均呈明显的季节变化,且具有明显的根序差异性.低级根序细根数量特征季节差异显著,细根生物量在生长季显著增加而生长季后显著下降.高级根序细根比根长季节波动显著,而根长密度和根组织密度等形态特征波动较小.连作导致人工林杨树1~2级细根长度、生物量、比根长和根长密度在生长季显著增大.1级细根数量特征与土壤温湿度呈显著正相关,与土壤有机质和速效氮含量呈显著负相关;而2级细根数量特征仅与土壤养分显著相关.杨树人工林细根特征的季节动态及代际差异体现了杨树对细根的碳投入变化,因连作引发的土壤养分匮乏可能引发植株对根系的碳投入增加,这种碳分配格局与人工林地上部分生产力形成密切相关.  相似文献   

3.
武夷山不同海拔黄山松细根性状季节变化   总被引:5,自引:3,他引:2  
细根作为植物吸收养分和水分的主要器官,其功能性状对森林生态系统功能具有重要影响。以武夷山黄山松为研究对象,通过对不同季节(春季、夏季、秋季和冬季)和不同海拔(1200、1400、1600、1800 m和2000 m)的黄山松细根的功能性状的测定,分析其细根性状特征随海拔和季节变化的规律。结果表明:(1)黄山松细根比根长(SRL),比根面积(SRA)均随海拔先升高后降低,其均值分别为(9.32±0.35) cm/g与(276.41±68.10) cm~2/g;根组织密度(RTD)随海拔先降低后升高,均值为(0.16±0.05) g/cm~3。根平均直径(AvgDiam)随海拔增加变化不显著,均值为(0.097±0.004) mm。SRL和SRA在海拔1600 m处达到最大,而RTD和AvgDiam的最大值出现在海拔1800 m或2000 m处。(2)SRL和SRA在夏季或秋季达到最大,RTD和AvgDiam最大值则出现在冬季或春季。季节和海拔对各细根性状都有显著影响(P0.01),但季节与海拔对根性状并没有产生显著的交互作用(P0.05)。(3)SRL与SRA间的异速生长指数是1.25,显著大于1.0(P0.01);SRL与RTD存在负等速生长关系,而与AvgDiam存在显著负异速生长关系(P0.01);SRA与RTD,以及RTD与AvgDiam间均存在显著负异速生长关系(P0.01),但SRA与AvgDiam之间不存在异速生长关系。黄山松的细根性状在1600 m处倾向于增加比根长和比根面积,而在海拔1800 m或2000 m处则倾向于增加组织密度与根直径,这与黄山松细根性状从夏秋到冬春的季节变化规律相类似。同时,相对于比根面积来说,黄山松的细根在海拔1600 m处和夏秋季节更倾向于投资比根长来增加养分的吸收。  相似文献   

4.
The functional groups of plants that characterize different phases of succession are expected to show differences in root distribution, fine‐root traits and degrees of association with arbuscular mycorrhizal (AM) fungi. The relationship involving fine‐root traits and AM fungi that regulate the nutrient acquisition potential among different plant functional groups are still not well understood. We assessed fine‐root morphology, AM fungal variables and soil fertility in grassland, secondary forest and mature forest in Atlantic, Araucaria and Pantanal ecosystems in Brazil. Soil cores were collected at 0–10 and 10–20 cm depths. Fine roots were extracted from soil by sieving and root morphological traits and AM colonization were determined. The AM spores were extracted from soil and counted. In all ecosystems, soil fertility, fine‐root mass and root diameter increased with the succession, while root length, specific root length, root‐hair length, root‐hair incidence, AM colonization and AM spore density decreased. These results suggest that plant species from early stages of tropical succession with inherent rapid growth invest in fine roots and maintain a high degree of AM colonization in order to increase the capacity for nutrient acquisition. Conversely, fine root morphological characteristics and low degree of AM colonization exhibited by plants of the later stages of succession lead toward a low nutrient uptake capacity that combine with their typical low growth rates. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

5.
《植物生态学报》2015,39(12):1198
Aims The relationship between rhizosphere process and fine root growth is very close but still obscure. In poplar plantation, phenolic acid rhizodeposition and soil nutrient availability were considered as two dominant factors of forest productivity decline. It is very hard to separate them in the field and they might show an interactive effect on fine root growth. The objective of this study is to examine the influence of phenolic acids and nitrogen on branch orders of poplar fine roots and to give a deeper insight into how the ecological process on root-soil interface affected fine root growth as well as plantation productivity. Methods The cuttings of health annual poplar seedlings (I-107, Populus × euramericana ‘Neva’) serve as experiment materials, and were cultivated under nine conditions, including three concentration of phenolic acids at 0X, 0.5X, 1.0X (here, X represented the contents of phenolic acids in the soil of poplar plantation) and three concentration of nitrogen at 0 mmol·L-1, 10 mmol·L-1, 20 mmol·L-1, based on Hoagland solution. The roots were all separated from poplar seedlings after 35 days, and 30 percent of total fine roots of every treatment were taken as fine root samples. These fine roots were grouped according to 1 to 5 branch orders, and then the morphological traits of each group of fine roots were scanned via root analyzer system (WinRHIZO, Regent Instruments Company, Quebec, Canada) including total length, surface area, volume and average diameter. Meanwhile, the dry mass of fine root samples of every order was measured to calculate specific root length (SRL), root tissue density (RTD). All data were analyzed via SPSS 17.0 software, and interactive effect of phenolic acids and nitrogen on roots was analyzed through univariate process module. Principal component analysis (PCA) and redundancy analysis (RDA) were conducted via Canoco 4.5 software. Important findings Under the conditions without phenolic acids application, the fine roots growth was significantly inhibited in deficiency and higher nitrogen treatments, especially for 1-3 order roots. Only specific root length appeared decreased with nitrogen level, and other traits of fine roots did not demonstrate linear relationship with nitrogen concentrations. Compared to 0.5X phenolic acids treatment, 1.0X phenolic acids significantly promoted the diameter and volume of 1-2 order roots (p < 0.05). Both phenolic acids and nitrogen demonstrated influence on poplar fine root traits. However, the diameter and volume of 1-2 order roots were significantly affected by phenolic acids, while the total length and surface area of 4-5 order roots was affected by nitrogen. Two way ANOVA showed that phenolic acids and nitrogen made a synergistic or antagonistic effect on morphological building of fine roots. Furthermore, PCA and RDA indicated that the interactive effects of phenolic acids and nitrogen led to significant differences among 1-3 order, 4th order and 5th order of poplar fine roots. The PC1 explained about 60.9 percent of root morphological variance, which was related to foraging traits of roots. The PC2 explained 25.3 percent of variance, which was related to root building properties. The response of poplar roots to phenolic acids and nitrogen was closely related to root order, and nitrogen played more influence on poplar roots than phenolic acids. Thus, phenolic acids and nitrogen level would affect many properties of root morphology and foraging in rhizosphere soil of poplar plantation. But nitrogen availability would serve as a dominant factor influencing root growth, and soil nutrient management should be critical to productivity maintenance of poplar plantation.  相似文献   

6.
树木细根生长与根际过程的关系十分密切。该研究仿生欧美杨107 (Populus × euramericana ‘Neva’)人工林根际土壤酚酸沉降与氮素有效性变化, 通过设置3种酚酸梯度(0X、0.5X、1.0X, X为田间土壤酚酸含量)与3种氮素水平(缺氮0 mmol·L-1、正常氮10 mmol·L-1、高氮20 mmol·L-1), 探究酚酸和氮素对欧美杨107细根形态的影响, 以期为阐明树木根系生长对根-土界面过程的响应奠定基础。结果表明: (1)在无酚酸(0X)环境中, 缺氮和高氮均可抑制欧美杨107细根生长, 尤其对1-3级细根的影响更为显著。比根长随氮素水平升高逐渐减小, 但其他细根特征并未呈现与氮素水平的线性关系。(2) 0.5X和1.0X酚酸梯度相比, 欧美杨107的1-2级细根直径和体积随酚酸浓度增加而显著增大(p < 0.05)。酚酸和氮素对杨树细根的影响存在交互作用, 1-2级细根直径、体积受酚酸的影响显著, 而4-5级细根长度、表面积受氮素影响显著。双因素方差分析结果表明, 酚酸和氮素对细根形态建成具有协同或拮抗效应。(3)主成分分析(PCA)和冗余分析(RDA)结果表明, 在酚酸和氮素交互效应下, 杨树1-3级、 4级、 5级细根之间具有显著的形态差异。第一主成分主要体现细根觅食性状特征, 可解释细根形态变异的60.9%的信息; 第二主成分主要体现细根形态构建特征, 可解释25.3%的信息。杨树细根形态变化与根序高度相关, N素影响杨树细根形态的主效应较酚酸更强。因此, 根际环境中酚酸累积和氮素有效性变化会影响杨树细根的形态构建和细根对水分、养分的吸收, 而氮素有效性是影响杨树细根生长的重要因素, 开展杨树人工林土壤养分管理是林分生产力长期维持的关键。  相似文献   

7.
研究川西亚热带次生常绿阔叶林优势树种扁刺栲1~5级细根形态和化学特征,及其对氮添加的响应.结果表明: 随根序等级的增加,扁刺栲根直径、根组织密度、K含量增加,而比根长、比表面积及N、P、Mg含量降低.氮添加显著增加了扁刺栲细根N含量,降低了Mg含量和C/N,使细根Ca含量呈下降趋势,对根序C、P、K、Na、Al、Mn、Fe含量无显著影响.氮添加未显著影响扁刺栲细根直径、比根长、比表面积和根组织密度.在所有处理中,细根P含量均与各形态特征呈显著线性回归关系.氮添加处理下,细根Mg含量与形态特征之间的线性关系由不显著变为显著,而细根N含量与形态特征之间的线性关系由显著变为不显著.氮添加会影响根系营养元素含量,并增强植物对P和Mg的需求.  相似文献   

8.
武夷山落叶林木本植物细根性状研究   总被引:2,自引:1,他引:2  
王钊颖  程林  王满堂  孙俊  钟全林  李曼  程栋梁 《生态学报》2018,38(22):8088-8097
细根作为植物吸收水分与养分的重要器官,其性状特征在指示植物的生长和分布等方面的意义重大。以江西武夷山国家级自然保护区落叶林群落木本植物的细根为对象,对根氮含量(RNC)、根磷含量(RPC)、根氮磷比(RN∶P)、根组织密度(RTD)、比根长(SRL)和比根面积(SRA)等6个细根性状进行了研究,并对群落内不同物种以及不同结构单元(灌木和乔木)间细根性状的差异性进行分析。结果表明:武夷山落叶林群落木本植物的平均RNC为(10.27±3.11) mg/g、平均RPC为(0.63±0.17) mg/g、平均RN∶P为16. 36±2. 61、平均RTD为(0. 10±0. 02) g/cm~3、平均SRL为(1582.65±186.67) cm/g、平均SRA为(464.81±64.10) cm~2/g;灌木的SRL显著高于乔木(P=0.033),其余细根性状在灌木和乔木之间无显著差异(P 0.05);在细根性状中,RNC与RPC呈极显著正相关,但与RTD呈显著负相关,RPC、SRA分别与RTD呈极显著负相关,RPC、SRL分别与SRA呈极显著正相关。这可能反映了灌木倾向于通过增加SRL来提高水分和养分的获取能力以增强与乔木的竞争优势;群落中的植物通过改变SRA及RTD进行生长与防御之间的权衡。  相似文献   

9.
在福建三明陈大国有采育场杉木幼苗小区,采用土钻法和内生长环法,以非隔离降水为对照,对隔离降水50%处理一年的杉木幼苗细根生物量和形态、化学计量学、比根呼吸、非结构性碳水化合物等功能特征进行研究.结果表明: 与对照相比,隔离降水处理0~1 mm细根生物量显著降低,1~2 mm细根生物量差异不显著;隔离降水导致细根在形态上发生了适应性变化,0~1 mm和1~2 mm细根比根长分别增加21.1%和30.5%,0~1 mm细根组织密度显著降低,而比表面积显著增加.隔离降水导致细根氮的富集,但限制了对磷的吸收,氮磷比升高,导致营养失衡;隔离降水没有显著改变细根比根呼吸和非结构性碳水化合物含量,但导致1~2 mm细根可溶性糖、糖淀比显著降低,淀粉含量增加33.3%,表明其通过增加非结构性碳水化合物贮存比例以应对降水减少.  相似文献   

10.
Functional traits of leaves and fine root vary broadly among different species, but little is known about how these interspecific variations are coordinated between the two organs. This study aims to determine the interspecific relationships between corresponding leaf and fine‐root traits to better understand plant strategies of resource acquisition. SLA (Specific leaf area), SRL (specific root length), mass‐based N (nitrogen) and P (phosphorus) concentrations of leaves and fine roots, root system, and plant sizes were measured in 23 woody species grown together in a common garden setting. SLA and SRL exhibited a strong negative relationship. There were no significant relationships between corresponding leaf and fine‐root nutrient concentrations. The interspecific variations in plant height and biomass were tightly correlated with root system size characteristics, including root depth and total root length. These results demonstrate a coordinated plant size‐dependent variation between shoots and roots, but for efficiency, plant resource acquisition appears to be uncoupled between the leaves and fine roots. The different patterns of leaf and fine‐root traits suggest different strategies for resource acquisition between the two organs. This provides insights into the linkage between above‐ and belowground subsystems in carbon and nutrient economy.  相似文献   

11.
Root respiration is a critical physiological trait involved in root resource acquisition strategies, yet it is less represented in root trait syndrome. Here we compiled a large dataset of root respiration associated with root chemical and morphological traits from 245 plant species. Our results demonstrated that root respiration correlated positively with root nitrogen concentration (RNC) and negatively with root tissue density (RTD) across and within woody and non‐woody species. However, the relationships between root respiration and specific root length (SRL) and root diameter (RD) were weak or even insignificant. Such root respiration–traits relationships were not completely in line with predictions by the root economics spectrum (RES). Furthermore, the principal component analysis showed that root trait syndrome was multidimensional. Root respiration was associated more strongly with the RNC‐RTD axis (the classical RES) than with the orthogonal SRL‐RD axis for woody species, but not for non‐woody species. Collectively, the linkages of root physiological, chemical, and morphological traits provide a better understanding of root trait covariation and root resource acquisition strategies.  相似文献   

12.
增温、施肥与种内竞争的交互作用对云杉根系属性的影响 物种竞争、气温和土壤养分是青藏高原东部高寒地区影响树木生长的重要因素。虽然已开展了大量关于物种竞争、气温、施肥单因素对树木生长的影响研究,但关于这三者的交互作用对根系生长的影响还知之甚少。因此,本研究拟通过测量根系属性(细根长、根表面积、比根长、比表面积、根尖数、根系分支数等)、根生物量,以及根系养分吸收,研究施肥和增温对物种竞争的影响,并进一步探讨施肥、增温与物种竞争的交互作用对云杉(Picea asperata)生长的影响机制以及所采取的适应策略。研究结果表明,增温、施肥和竞争均提高了细根的氮、钾浓度,但并未影响细根生物量和根长、根表面积、根尖数和根分支数等根系特征。然而,无论是增温、施肥,或是它们的联合作用,与物种竞争进行交互时,均增加了根长、根表面积、根尖数、根系分支数和养分吸收。此外,施肥降低了根比表面积、比根长和单位面积的根尖数和根分支数,增温和竞争的交互作用使根比表面积、比根长下降,其他参数不受温度和竞争的影响。该结果表明,云杉在物种竞争、气候变暖、施肥及其交互作用下保持着保守的营养策略。该研究加强了对树木应对全球变化的生理和生态适应性的理解。  相似文献   

13.
Changes in function as an individual root ages has important implications for understanding resource acquisition, competitive ability and optimal lifespan. Both nitrate uptake and respiration rates of differently aged fine roots of grape (Vitis rupestris x V. riparia cv. 3309 C) were measured. The resulting data were then used to simulate nitrate uptake efficiency and nutrient depletion as a function of root age. Both nitrate uptake and root respiration declined remarkably quickly with increasing root age. The decline in both N uptake and root respiration corresponded with a strong decline in root N concentration, suggesting translocation of nitrogen out of the roots. For simulations where no nutrient depletion occurs at the root surface, daily uptake efficiency was maximal at root birth and lifetime nitrate uptake efficiency slowly increased as the roots aged. Simulations of growth of roots into unoccupied soil using a solute transport model indicated the advantage of high uptake capacity in new roots under competitive conditions where nitrate availability is very transitory.  相似文献   

14.
全球气候变暖与氮(N)沉降是两个同时存在的全球变化主要因素,但目前关于二者的研究多以单因子为主。细根形态和化学性状等功能性状在促进植物养分获取和森林生物地球化学循环方面起着关键作用,但目前气候变暖、N沉降以及两者交互对细根形态和化学性状的影响尚不清楚。在福建三明森林生态系统国家野外科学观测研究站陈大观测点开展土壤增温与N添加双因子试验,包括对照(无增温,无氮添加)、低氮(+4gN m-2 a-1)、高氮(+8gN m-2 a-1)、增温(+5℃)、增温+低氮(+5℃,+4gN m-2 a-1)、增温+高氮(+5℃,+8gN m-2 a-1)六个处理,探讨增温与N添加对杉木(Cunninghamia Lanceolata)细根形态和化学性状的影响。结果表明:(1)增温显著增加了细根直径(D)。增温和N添加的交互作用对细根比根长(SRL)、比表面积(SRA)及组织密度(RTD)均存在显著影响,与对照相比,增温处理及增...  相似文献   

15.
该研究以共存于同一暖温带森林的6个外生菌根(ECM)树种为研究对象,测定分析不同根序(1~5级)和功能根系(吸收细根和运输细根)的主要形态和构型属性及ECM侵染率,探究不同外生菌根树种的根属性变异模式及其与菌根真菌侵染程度的关系。结果表明:(1)随着根序的增加,不同树种根直径和单根长度均增加,而比根长和根分支强度均降低;根属性在同一根序下均存在显著的种间差异,尤其是2个裸子植物(落叶松和油松)的根直径较其他4个被子植物大。(2)同一树种的所有根属性在吸收细根和运输细根之间均有显著差异;吸收细根和运输细根的根直径、比根长和根组织密度在树种间均存在显著差异,而其单根长度和根分支强度在树种间无显著差异。(3)ECM侵染率以落叶松最高,千金榆和白桦最低,且与根尖直径呈显著正相关关系,与根尖比根长呈显著负相关关系。研究发现,基于根序或者功能根系,根属性在种间的变异模式不完全一致,单根长度和根分支强度在两个功能根系中均没有表现出显著的种间差异;吸收细根的比根长和根分支强度的变异系数较大,对环境变化有较敏感的响应;古老树种的根直径相对较粗,对菌根真菌的依赖性更高。  相似文献   

16.
An investigation of fine (< 1 mm in diameter) and small (1–2 mm in diameter) roots in the organic soil layer was carried out in a Norway spruce forest stand with different treatments of water and nutrients, including control (C); ammonium sulphate application (NS); nitrogen-free fertilization (V); irrigation with liquid fertilization (a complete nutrient solution) (IF); NS followed by artificial drought (ND); V followed by artificial drought (VD). In order to evaluate the vitality and function of the fine roots, the following approaches were used: i) classification of fine roots, based on morphological characteristics; ii) nutrient uptake bioassay, using 32P-phosphate and 35S-sulphate; iii) nutrient concentration in fine roots and its relation to nutrient uptake. The NS treatment showed effects on the fine and small roots, with a decrease in amount of living roots, and a decrease in the total amount of fine and small roots. The VD treatment resulted in increased amounts of living small roots, while the ND treatment showed the opposite, as compared with the V and NS treatments, respectively. The uptake of P was negatively related to the P supply, with a higher P uptake for C and NS fine roots than for IF and V fine roots. The specific root length (SRL, m g-1 DW) decreased for NS fine roots and increased for IF fine roots, indicating a further increase in uptake for NS roots and a decreased uptake for IF roots if calculated on a root length basis. So far, the NS and IF treatments maintain a considerable increase in above-ground biomass with a significantly reduced root biomass and standing crop.  相似文献   

17.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   

18.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

19.
黄土高原白羊草、沙棘和辽东栎细根比根长特性   总被引:11,自引:1,他引:10  
韦兰英  上官周平 《生态学报》2006,26(12):4164-4170
以黄土高原地区典型草本(白羊草)、灌木(沙棘)和乔木(辽东栎)为对象,研究了3种植物细根比根长在不同土层的分布状况以及与其它细根参数和土壤物理因子之间的相关性。结果表明,3种植物细根比根长的变化范围为6~55ram/rag。在0,80cm土层,白羊草、沙棘和辽东栎细根比根长变化范围分别为18—55mm/mg,14—4JDmm/mg,6—33mm/mg。3种植物0--80cm土层平均细根比根长从大到小依次为白羊草〉沙棘〉辽东栎。3种植物0-10cm土层细根比根长依次为沙棘〉辽东栎〉白羊草,10-80cm依次为白羊草〉辽东栎〉沙棘,表明3种植物细根比根长不仅在这两土层中的分布不具一致性,而且与0-80cm土层平均比根长也不具有一致性,进一步说明3种植物沿土壤剖面的生物量分配策略不同。相关分析表明,3种植物细根比根长与其它细根参数之间的相互关系各不相同,制约程度存在差异。与土壤物理因子的相关分析表明,3种植物细根比根长均随土壤含水量的增加而减少。土壤各级水稳性团聚体和土壤颗粒对3种植物细根比根长并无一致的影响。  相似文献   

20.
《植物生态学报》2016,40(12):1344
The morphology of fine root branching of woody plants is highly variable in their forms and functions. In the past two decades, researchers have increasingly recognized that the root-diameter-based method, using an arbitrary size of root diameter, failed to precisely characterize the physiological and ecological processes involved in finest roots. The number of publications using root-order-based approaches has increased regardless the fact that root trait-measurements based on root order are time-consuming and labor-intensive. A new approach—root functional classification method—was proposed and had been applied in the literature. The functional classification of fine roots separates roots of < 2 mm to absorptive and transport pools, making it more feasible for studies on root biomass and turnover. This new concept redefines fine root guild and has great potentials for future studies. Our literature review of the topic indicates that less is known about the inter-specific differences in estimates of biomass of absorptive and/or transport roots, with a large variation of absorptive roots on global scale. In addition, our review emphasizes the importance in: a) precision estimating of the absorptive biomass of fine roots, and b) proper definition of the range of the transport roots within and among forest ecosystems. Finally, after compare the strengths and weaknesses of the functional classification method, we propose several specific suggestions to improve the applications of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号