首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipod Gammarus pulex and two species of acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus. Both species show carotenoid-based colorations, but rely, respectively, on freshwater fish and aquatic bird species as final hosts. In addition, the two parasites differ in the type of behavioural alteration brought to their common intermediate host. Pomphorhynchus laevis reverses negative phototaxis in G. pulex, whereas P. minutus reverses positive geotaxis. In aquaria, trout showed selective predation for P. laevis-infected gammarids, whereas P. minutus-infected ones did not differ from uninfected controls in their vulnerability to predation. We tested for an effect of parasite coloration on increased trophic transmission by painting a yellow-orange spot on the cuticle of uninfected gammarids and by masking the yellow-orange spot of infected individuals with inconspicuous brown paint. To enhance realism, match of colour between painted mimics and true parasite was carefully checked using a spectrometer. We found no evidence for a role of parasite coloration in the increased vulnerability of gammarids to predation by trout. Painted mimics did not differ from control uninfected gammarids in their vulnerability to predation by trout. In addition, covering the place through which the parasite was visible did not reduce the vulnerability of infected gammarids to predation by trout. We discuss alternative evolutionary explanations for the origin and maintenance of carotenoid-based colorations in acanthocephalan parasites.  相似文献   

2.
Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in the presence of parasites induced massive structural changes: amphipod abundances decreased species‐specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, four degree higher temperatures in the absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19–25°C) and parasitism, simulating a prolonged heat‐wave scenario, resulted in an almost complete parasite‐induced extermination of the amphipod community at 25°C. In addition, at 19°C, just two degrees above the present average, a similar temperature–parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat‐wave temperature of 25°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate in terms of abundance and diversity in face of anticipated global warming, functionally changing them to be dominated by infaunal species.  相似文献   

3.
Although various species of acanthocephalan parasites can increase the vulnerability of their amphipod intermediate hosts to predation, particularly by altering their photophobic behaviour, their influence on the structure of amphipod communities and the success of invader species has so far received little attention. We compared the prevalence and behavioural influence of a fish acanthocephalan parasite, Pomphorhynchus laevis, in two species of amphipods, Gammarus pulex and Gammarus roeseli in sympatry in the river Ouche (Burgundy, eastern France). There, G. pulex is a resident species, whereas G. roeseli is a recent coloniser. Both uninfected G. pulex and G. roeseli were strongly photophobic, although less so in the invading species. However, there was no significant difference in reaction to light between infected and uninfected G. roeseli, whereas infected G. pulex were strongly photophilic. We discuss our results in relation to the parasite's ability to manipulate invading host species, the possibility that resistant individuals have been selected during the invasion process, and the role that acanthocephalan parasites can play in shaping the structure of amphipod communities.  相似文献   

4.
Phenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.  相似文献   

5.
Invasive species can have profound impacts on communities and it is increasingly recognized that such effects may be mediated by parasitism. The ‘enemy release’ hypothesis posits that invaders may be successful and have high impacts owing to escape from parasitism. Alternatively, we hypothesize that parasites may increase host feeding rates and hence parasitized invaders may have increased community impacts. Here, we investigate the influence of parasitism on the predatory impact of the invasive freshwater amphipod Gammarus pulex. Up to 70 per cent of individuals are infected with the acanthocephalan parasite Echinorhynchus truttae, but parasitized individuals were no different in body condition to those unparasitized. Parasitized individuals consumed significantly more prey (Asellus aquaticus; Isopoda) than did unparasitized individuals. Both parasitized and unparasitized individuals displayed Type-II functional responses (FRs), with the FR for parasitized individuals rising more steeply, with a higher asymptote, compared with unparasitized individuals. While the parasite reduced the fitness of individual females, we predict a minor effect on population recruitment because of low parasite prevalence in the peak reproductive period. The parasite thus has a large per capita effect on predatory rate but a low population fitness effect, and thus may enhance rather than reduce the impact of this invader.  相似文献   

6.
Although various species of acanthocephalan parasites can increase the vulnerability of their amphipod intermediate hosts to predation, particularly by altering their photophobic behaviour, their influence on the structure of amphipod communities and the success of invader species has so far received little attention. We compared the prevalence and behavioural influence of a fish acanthocephalan parasite, Pomphorhynchus laevis, in two species of amphipods, Gammarus pulex and Gammarus roeseli in sympatry in the river Ouche (Burgundy, eastern France). There, G. pulex is a resident species, whereas G. roeseli is a recent coloniser. Both uninfected G. pulex and G. roeseli were strongly photophobic, although less so in the invading species. However, there was no significant difference in reaction to light between infected and uninfected G. roeseli, whereas infected G. pulex were strongly photophilic. We discuss our results in relation to the parasite's ability to manipulate invading host species, the possibility that resistant individuals have been selected during the invasion process, and the role that acanthocephalan parasites can play in shaping the structure of amphipod communities.  相似文献   

7.
Predicting the effects of climate change requires understanding complex interactions among multiple abiotic and biotic factors. By influencing key interactions among host species, parasites can affect community and ecosystem structuring. Yet, our understanding of how multiple parasites and abiotic factors interact to alter ecosystem structure remains limited. To empirically test the role of temperature variation and parasites in shaping communities, we used a multigenerational mesocosm experiment composed of four sympatric freshwater crustacean species (isopods and amphipods) that share up to four parasite species. Mesocosms were assigned to one of four different treatments with contrasting seasonal temperatures (normal and elevated) and parasite exposure levels (continuous and arrested (presence or absence of parasite larvae in mesocosm)). We found that parasite exposure and water temperature had interactive effects on the host community. Continuous exposure to parasites altered the community structure and differences in water temperature altered species abundance. The abundance of the amphipod Paracalliope fluviatilis decreased substantially when experiencing continuous parasite exposure and elevated water temperatures. Elevated temperatures also led to parasite-induced mortality in another amphipod host, Paracorophium excavatum. Contrastingly, isopod hosts were affected much less, suggesting increasing temperatures in conjunction with higher parasite exposure might increase their relative abundance in the community. Changes in invertebrate host populations have implications for other species such as fish and birds that consume crustaceans as well as having impacts on ecosystem processes, such as aquatic primary production and nutrient cycling. In light of climate change predictions, parasite exposure and rise in average temperatures may have substantial impacts on communities and ecosystems, altering ecosystem structure and dynamics.  相似文献   

8.
Besides the direct impact on the general performance of individual organisms, the ecological consequences of climate change in terrestrial and marine ecosystems are expected to be determined by complex cascading effects arising from modified trophic interactions and competitive relationships. Recently, the synergistic effect of parasitism and climate change has been emphasised as potentially important to host population dynamics and community structure, but robust empirical evidence is generally lacking. The amphipod Corophium volutator is an ecologically important species in coastal soft-bottom habitats of the temperate North Atlantic, and commonly serves as host to microphallid trematodes that cause intensity-dependent and temperature-dependent mortality in the amphipod population. Using a simulation model parameterised with experimental and field data, we demonstrate that a 3.8°C increase in ambient temperature will likely result in a parasite-induced collapse of the amphipod population. This temperature increase is well within the range predicted to prevail by the year 2075 in the International Wadden Sea region from where the model data are obtained. Due to the amphipods’ ecological importance, their population decline may impact the coastal ecosystem as a whole.  相似文献   

9.

Aim

Climate change affects ecological communities via impacts on species. The community's response to climate change can be represented as the temporal trend in a climate-related functional property that is quantified using a relevant functional trait. Noteworthy, some species influence this response in the community more strongly than others.

Innovation

Leveraging on the concept of keystone species, we propose that species with a strong effect on the community's functional response to climate change beyond their relative abundance can be considered as ‘climate keystone species’. We develop a stepwise tool to determine species' effects on a community's climate response and identify climate keystone species. We quantify the species-specific effect by measuring the difference in the community's climate response with and without the species. Next, we identify climate keystone species as those with a strong residual effect after weighting with their relative abundances in the community.

Main Conclusions

To illustrate the use of the stepwise tool with empirical data, we identify climate keystone species that have a strong effect on the change in the average temperature niche in North American bird communities over time and find the identification tool ecologically relevant. Identification of climate keystone species can serve as an additional conservation method to efficiently protect ecological communities and, in turn, the ecosystem functions they provide.  相似文献   

10.
Parasite survival in hosts mainly depends on the capacity to circumvent the host immune response. Acanthocephalan infections in gammarids are linked with decreased activity of the prophenoloxidase (ProPO) system, suggesting an active immunosuppression process. Nevertheless, experimental evidence for this hypothesis is lacking: whether these parasites affect several immune pathways is unknown and the consequences of such immune change have not been investigated. In particular, the consequences for other pathogens are not known; neither are the links with other parasite-induced manipulations of the host. Firstly, using experimental infections of Pomphorhynchus laevis we confirmed that the lower immune activity in parasitised Gammarus pulex is induced by the parasite infection. Second, using natural infections of three different parasites, P. laevis, Pomphorhynchus tereticollis and Polymorphus minutus, we showed that acanthocephalan infection was associated with reduction of the activity of the ProPO system and the haemocyte concentration (two major parameters of crustacean immunity) suggesting that immune depression is a phenomenon affecting several immunological activities. This was confirmed by the fact that acanthocephalan infection (whatever the parasite species) was linked to a lower efficiency to eliminate a bacterial infection. The result suggests a cost of parasite immune depression. Finally, acanthocephalans are also known to induce behavioural alterations in the intermediate host which favour their transmission to definitive hosts. We did not find any correlation between behavioural and immunological alterations in both experimentally and naturally-infected gammarids. Overall, this study suggests that whilst immune depression might be beneficial to acanthocephalan survival within the intermediate gammarid host, it might also be costly if it increases host mortality to additional infections before transmission of the parasite.  相似文献   

11.
Climate change, parasitism and the structure of intertidal ecosystems   总被引:1,自引:0,他引:1  
Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite-mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 4 degrees C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes. The available evidence indicates that climate-mediated changes in local parasite abundance will have significant repercussions for intertidal ecosystems. On the bright side, the marked effects of even slight increases in temperature on cercarial production in trematodes could form the basis for monitoring programmes, with these sensitive parasites providing early warning signals of the environmental impacts of global warming.  相似文献   

12.
Few endoparasite species are pigmented. Acanthocephalans are an exception however, with several species being characterised by yellow to orange colouration both at the immature (cystacanth) and adult stages. However, the functional and adaptive significance of carotenoid-based colourations in acanthocephalans remains unclear. One possibility is that the carotenoid content of acanthocephalan cystacanths acts as a protective device against ultra-violet radiation (UVR) passing through the translucent cuticle of their crustacean hosts. Indeed, acanthocephalans often bring about behavioural changes in their aquatic intermediate hosts that can increase their exposure to light. Carotenoid composition and damage due to ultra-violet - B (UVB) radiation were investigated in three acanthocephalan parasite species that induce contrasting behavioural alterations in their common intermediate host, the crustacean amphipod Gammarus pulex. The fish acanthocephalans Pomphorhynchus laevis and Pomphorhynchus tereticollis both induce a positive phototaxis in gammarids, such that infected hosts spend more time out of shelters, while remaining benthic. The bird acanthocephalan Polymorphus minutus, on the other hand, induces a negative geotaxis, such that infected hosts typically swim close to the water surface, becoming more exposed to UV radiation. We show that differences in cystacanth colouration between acanthocephalan species directly reflect important differences in carotenoid content. The two fish parasites exhibit a contrasting pattern, with P. tereticollis harbouring a large diversity of carotenoid pigments, whereas P. laevis is characterised by a lower carotenoid content consisting mainly of lutein and astaxanthin. The highest carotenoid content is found in the bright orange P.minutus, with a predominance of esterified forms of astaxanthin. Exposure to UVB radiation revealed a higher susceptibility in P. laevis larvae compared with P. tereticollis and P. minutus, in terms of sublethality (decreased evagination rate) and of damage to DNA (increased cyclobutane pyrimidine dimers production). Although we found important and correlated interspecific differences in carotenoid composition and tolerance to high UVB radiation, our results do not fully support the hypothesis of adaptive carotenoid-based colourations in relation to UV protection. An alternative scenario for the evolution of carotenoid accumulation in acanthocephalan parasites is discussed.  相似文献   

13.
For many parasites with complex life cycles, manipulation of intermediate host phenotypes is often regarded as an adaptation to increase the probability of successful transmission. This phenomenon creates opportunities for either synergistic or conflicting interests between different parasite species sharing the same intermediate host. When more than one manipulative parasite infect the same intermediate host, but differ in their definitive host, selection should favour the establishment of a negative association between these manipulators. Both Polymorphus minutus and Pomphorhynchus laevis exploit the amphipod Gammarus pulex as intermediate host but differ markedly in their final host, a fish for P. laevis and a bird for P. minutus. The pattern of host use by these two conflicting manipulative parasites was studied. Their incidence and intensity of infection and their distribution among G. pulex were first examined by analysing three large samples of gammarids collected from the river Tille, Eastern France. Both parasites had low prevalence in the host population. However, temporal fluctuation in the level of parasitic infection was observed. Overall, prevalence of both parasite species was higher in male than in female G. pulex. We then assessed the degree of association between the two parasites among their intermediate hosts, using two different methods: a host-centred measure and a parasite-centred measure. Both measures gave similar results; showing random association between the two acanthocephalan species in their intermediate hosts. We discuss our results in relation to the selective forces and ecological constraints that may determine the pattern of association between conflicting manipulative parasites.  相似文献   

14.
Recent findings suggest that grouping with conspecifics is part of the behavioural defences developed by amphipod crustaceans to face predation risk by fish. Amphipods commonly serve as intermediate hosts for trophically transmitted parasites. These parasites are known for their ability to alter intermediate host phenotype in a way that promotes predation by definitive hosts, where they reproduce. If aggregation in amphipods dilutes the risk to be preyed on by fish, then it may dilute the probability of transmission for the parasite using fish as definitive hosts. Using experimental infections, we tested whether infection with the fish acanthocephalan Pomphorhynchus laevis alters attraction to conspecifics in the amphipod intermediate host Gammarus pulex. We also measured G. pulex's activity and reaction to light to detect potential links between changes in aggregation and changes in other behaviours. The attraction to conspecifics in the presence of predator cue, a behaviour found in uninfected gammarids, was cancelled by the infection, while phototaxis was reversed and activity unchanged. We found no correlation between the three behaviours in infected amphipods, while activity and aggregation were negatively correlated in uninfected individuals after the detection of predation cue. The physiological causes and the adaptive value of aggregation suppression are discussed in the context of a multidimensional manipulation.  相似文献   

15.
Parasitism is an important process in ecosystems, but has been largely neglected in ecosystem research. However, parasites are involved in most trophic links in food webs with, in turn, a major role in community structure and ecosystem processes. Several studies have shown that higher nutrient availability in ecosystems tends to increase the prevalence of parasites. Yet, most of these studies focused on resource availability, whereas studies investigating resource quality remain scarce. In this study, we tested the impact of the quality of host food resources on infection by parasites, as well as on the consequences for the host. Three resources were used to individually feed Gammarus pulex (Crustacea: Amphipoda) experimentally infected or not infected with the acanthocephalan species Pomphorhynchus laevis: microbially conditioned leaf litter without phosphorus input (standard resource); microbially conditioned leaf litter enriched in phosphorus; and microbially conditioned leaf litter without phosphorus input but complemented with additional inputs of benthic diatoms rich in both phosphorus and eicosapentaenoic acid. During the 110 day experiment, infection rate, parasite load, host survival, and parasite-mediated behavioral traits implicated in trophic transmission were measured (refuge use, geotaxis and locomotor activity). The resources of higher quality, regardless of the infection status, reduced gammarid mortality and increased gammarid growth. In addition, higher quality resources increased the proportion of infected gammarids, and led to more cases of multi-infections. While slightly modifying the geotaxis behavior of uninfected gammarids, resource quality did not modulate the impact of parasites on host behavior. Finally, for most parameters, consumption of algal resources had a greater impact than did phosphorus-enriched leaf litter. Therefore, manipulation of resource quality significantly affected host–parasite relationships, which stressed the need for future research to investigate in natura the relationships between resource availability, resource quality and parasite prevalence.  相似文献   

16.
Many trophically transmitted parasites with complex life cycles manipulate their intermediate host behavior in ways facilitating their transmission to final host by predation. This facilitation generally results from lowering host's antipredatory defenses when the parasite is infective to the final host. However, a recent theoretical model predicts that an optimal parasitic strategy would be to protect the intermediate host from predation when noninfective, before switching to facilitation when the infective stage is reached. We tested this hypothesis in the fish acanthocephalan parasite Pomphorhynchus laevis using the amphipod Gammarus pulex as intermediate host. Gammarids parasitized by noninfective stage of P. laevis (acanthella) hid significantly more under refuges than uninfected ones. In addition, acanthella-infected gammarids were less predated upon by trout than uninfected ones. As predicted, a switch toward decreased antipredatory behavior of G. pulex and enhanced vulnerability to predation was found when P. laevis reached the stage infective to its final host. The parasites appear to be able to exploit plasticity in host antipredatory responses, and shift the host optimal response toward their own optimal balance.  相似文献   

17.
Trophically transmitted parasites are likely to strongly influence food web-structure. The extent to which they change the trophic ecology of their host remains nevertheless poorly investigated and field evidence is lacking. This is particularly true for acanthocephalan parasites whose invertebrate hosts can prey on other invertebrates and contribute to leaf-litter breakdown. We used a multiple approach combining feeding experiments, neutral lipids and stable isotopes to investigate the trophic ecology of the freshwater amphipod Gammarus roeseli parasitized by the bird acanthocephalan Polymorphus minutus. Infected compared to uninfected amphipods consumed as many dead isopods, but fewer live isopods and less leaf material. Infection had no influence on the total concentration of neutral lipids. Contrary to what we expected based on laboratory findings, the nitrogen isotope signature, which allows for the estimation of consumer's trophic position, was not influenced by infection status. Conversely, the carbon isotope signature, which is used to identify food sources, changed with infection and suggested that the diet of infected G. roeseli includes less perilithon (i.e. fixed algae on rocks, stones) but more terrestrial inputs (e.g. leaf material) than that of uninfected conspecifics. This study shows evidence of changes in the trophic ecology of P. minutus-infected G. roeseli and we stress the need to complement feeding experiments with field data when investigating top-down effects of infection in an opportunistic feeder which adapts its diet to the available food sources.  相似文献   

18.
Regular samples of Gammarus pulex and dace Leuciscus leuciscus and occasional grayling Thymallus thymallus and chub L.cephalus were examined from the River Avon, Hampshire, for the presence of the acanthocephalan Pomphorhynchus leavis . The parasite only occurred in medium sized Gammarus due to lower probability of contact with small gammarids and stunted growth and selective mortality amongst older infected ones. No cycles in incidence or development of the parasite in G.pulex were observed. The parasite infected gammarids and grew in all months, and cystacanths were available throughout the year. Despite seasonal feeding activity and dietary preferences, fish fed on Gammarus and acquired infections in all months. Dispersion of P.laevis within the fish population was related to host feeding behaviour. No evidence of seasonal cycles in incidence or intensity of infection in fish was found, and observed monthly changes in the parasite population were related to changes in size structure of the host sample. In dace and grayling P.laevis grew little and matured only in summer, but in chub it grew and produced acanthors all year. The parasite population in fish appeared to be in a state of dynamic equilibrium and gain and loss of parasites took place throughout the year with the level of infection at any moment being determined primarily by the feeding behaviour of the host. This relationship between host diet, water temperature and parasite population size is discussed, and P.laevis in the R. Avon compared with other localities and other parasites.  相似文献   

19.
Parasites often manipulate host immunity for their own benefit, either by exacerbating or suppressing the immune response and this may directly affect the expression of parasite virulence. However, genetic variation in immunodepression, which is a prerequisite to its evolution, and the relationship between immunodepression and virulence, have rarely been studied. Here, we investigated the variation among sibships of the acanthocephalan parasite, Pomphorhynchus laevis, in infecting and in immunodepressing its amphipod host, Gammarus pulex. We also assessed the covariation between infectivity, parasite-induced immune depression and host mortality (parasite virulence). We found that infectivity, the intensity of immunodepression and virulence were variable among parasite sibships. Infectivity and the level of immunodepression were not correlated across parasite sibships. Whereas infectivity was unrelated to host mortality, we found that gammarids that were exposed to the parasite sibships that immunodepressed their hosts the most survived better. This positive covariation between host survival and immunodepression suggests that gammarids exposed to the less immunodepressive parasites could suffer from damage imposed by a higher activity of the phenoloxidase.  相似文献   

20.
1. The balance of predation between closely related invasive and native species can be an important determinant of the success or failure of biological invasions. In Irish freshwaters, the introduced amphipod Gammarus pulex has replaced the native G. duebeni celticus, possibly through differential mutual intraguild predation (IGP). Theoretically, parasitism could mediate such predation and hence the invasion outcome. However, this idea remains poorly studied. 2. In a field survey, we show that the acanthocephalan parasite Echinorynchus truttae is present in more G. pulex populations than G. d. celticus populations. In addition, within parasitised populations, E. truttae is more prevalent in the invader than in the native. 3. We show for the first time that an acanthocephalan parasite mediates predation between its intermediate macroinvertebrate hosts. In a field experiment, E. truttae parasitism of the invader lowered IGP upon the unparasitised native. In laboratory experiments, parasitism of G. pulex significantly reduced their predatory impact on recently moulted female G. d. celticus. Parasitism also appeared to cause reduction in predatory behaviour, such as attacks per contact on precopula guarded female natives. 4. We conclude that higher parasite prevalence in invaders as compared with natives, by mediation of interspecific interactions, could promote species coexistence, or at least slow species replacements, in this particular biological invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号